Organ Bank & 3d BioPrinter


In 2003, at age 79, my grandmother, who raised me and was like a mother to me died from cirrhosis. This desease, 12 years ago, in my country was associated with a life of alcohol excess. Nowadays I know that everyone who has had hepatitis is doomed to die from it and my grandmother was no exception. She had had it when she was 40. On the days previous to her death various things went trough my mind: the life of a young person seems to have more value than one from a old human being, her doctors didn’t even consider a liver transplant because of the long list of waiting patients younger than her. The second thing that called my attention was that organ donation from brain dead patients is a very difficult decision for the family and sometimes they change their mind, and its understable but makes the anguish of waiting is almost as painful as death itself.
I loved my grandmother very much, sometimes i think more than my mother, so this sad chapter of my life got me thinking: wouldn’t it be great if someone invented something to extend peoples life?
Ten years later I thought of becoming that someone and extend peoples lives with a process that starts with our Organ bank built on transformed stem cells extracted from the umbilical cord, third molar and or fat tissue, to later “print” an scaffold organ on a 3D printer and inoculate it with extracted and differentiated stem cells.
Although is very sad, I am sure that some of you are currently in the situation I lived 10 years ago or in need of a organ for yourself or know someone who needs one. Thats why I dare to ask you to join forces in the construction of a 3D biological printer: to save lives together. At this moment the BioPrinter is a designed prototype and have already ran out of funds reason why I am asking you for funds. in exchange of USD1000.00 I will cryogenate stem cells from the umbilical cord, third molar and/or fat tissue. If you can collaborate with 5000 in addition to the cryogenics we will give you cell differentiation also and to those who colaborate with more than USD10000 I offer, besides the cryogenics and cell differentiation, the elaboration of a no compact organ charging only working materials.

We firmly believe in replacing organs as a viable way for life expansion. Either genetics or age our organs deteriorate and end up failing our body. Given that we work as a whole when one of our parts fail its malfunction involve other organs and forces them to compensate this shortness . I.e. When the liver stops working our kidneys pick up the slack and double or triple their functions. This excessive work will eventually lead to the organs failure and subsequent death.

Once identified we start building the organ needed. To achieve the right size and weight of the organ we use the person muscle mass index calculated with its own height and weight. I.e. If we wish to replace an esophagus in a person who weighs 70kg and measures 1.70 mt. (Giving us a muscle mass index of 25) we would have to built a 40 cms esophagus. We can also use a MRI to get a 3D image and get the measurements we need.
Once identified the organs dimension we start developing it by:
First, creating virtual frame for the organ in a CAD computer program, in order to do so we use the number phi as a base to recreate blood cell paths that will feed the new organs cells. We find Phi and its golden ratio all over the universe: in some mollusk, in tree structures, in sunflowers and our DNA.Biofab has created a computer program based on it and if you wish to learn more about it just let us know.
With the CAD model we fill up our first bioprinters hedpin with the Biofabhidrogel (patented) and begin to create the organ’s structure. To know more about our gel please ask us confidentiality.
Meanwhike, we obtain -by using our extraction protocol- mesenchymal stem cells from fat or the third molar.
The extracted stem cells are differentiated and cultivated depending on the organ we will print. i.e. In order to print a esophagus we need endoderm cells, if we wish to print cartilage we will need chondrocytes cells.

Printing and Vascularity of the Organ
Once we have the design and biological material we begin the printing process
Printing is done layer by layer. first a layer of Hydrogel is printed as a frame, then the differentiated stem cells. By printing first the frame we can inject up to 17 nanomilimeters of biological material in the different paths we first made: G1 path (straight), G2 (semicircle), G3 (tangent) and G4 (cotangent) .
Since printing is done from the inside out, it can leave cavities of a thickness 10 times lower than the human hair, it is through this cavities that runs blood to feed the organ bringing it to life. That is the reason the process of printing one organ can be segmented and take quite a long time, about 10 hours to print a right knee cartilage and up to 48 hours to print an esophagus.
Once the organ is printed and loaded with biological material from stem cells it is brought to a bioreactor where it will be fed and cultivated to help its cells replicate in dozens of millions.
When the feeding and vascularity processes finish then the organ is transplanted to the human body.
Cesar Loo CEO — BioFab Inc — http://www.biofab.com.pe