Ankit Patel | Software engineer, Content Acquisition and Media Platform

With the growing need for machine learning signals from Pinterest’s huge visual dataset, we decided to take a closer look at our infrastructure that produces and serves these signals. A few parameters we were particularly interested in were signal availability, infra complexity and cost optimization, tech integration, developer velocity, and monitoring. In this post, we will describe our journey from a Lambda architecture to the new real-time signals infrastructure inspired by Kappa architecture.


In order to understand the existing visual signals infrastructure, we need to understand some of the basic content processing systems at Pinterest. Pinterest’s Content Acquisition and Media Platform, formerly known as Video and Image Platform (VIP), is responsible for ingesting, processing, and serving all of Pinterest’s content on every surface of the application. We ingest media at a massive scale every single day. This post will not go into details about the ingestion and serving part, and it will mostly focus on the processing part, as that is where most of the magic happens. …


Pinterest Engineering | Inventive engineers building the first visual discovery engine |

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store