# Computer Vision: Gaussian Filter from Scratch.

Mar 17, 2019 · 3 min read

Gaussian Filter is used in reducing noise in the image and also the details of the image. Gaussian Filter is always preferred compared to the Box Filter.

**Steps involved in implementing Gaussian Filter from Scratch on an image:**

- Defining the convolution function which iterates over the image based on the kernel size(Gaussian filter). In the figure below left image represent the old image with the red box as the kernel calculating the value from all the nine pixels and inserting in the center pixel.

def convolution(oldimage, kernel):

#image = Image.fromarray(image, 'RGB')

image_h = oldimage.shape[0]

image_w = oldimage.shape[1]

kernel_h = kernel.shape[0]

kernel_w = kernel.shape[1]

if(len(oldimage.shape) == 3):

image_pad = np.pad(oldimage, pad_width=(

\(kernel_h // 2, kernel_h // 2),(kernel_w // 2,

\kernel_w // 2),(0,0)), mode='constant',

\constant_values=0).astype(np.float32) elif(len(oldimage.shape) == 2):

image_pad = np.pad(oldimage, pad_width=(

\(kernel_h // 2, kernel_h // 2),(kernel_w // 2,

\kernel_w // 2)), mode='constant', constant_values=0)

\.astype(np.float32)

h = kernel_h // 2

w = kernel_w // 2

image_conv = np.zeros(image_pad.shape)

for i in range(h, image_pad.shape[0]-h):

for j in range(w, image_pad.shape[1]-w):

#sum = 0

x = image_pad[i-h:i-h+kernel_h, j-w:j-w+kernel_w]

x = x.flatten()*kernel.flatten()

image_conv[i][j] = x.sum()

h_end = -h

w_end = -w

if(h == 0):

return image_conv[h:,w:w_end]

if(w == 0):

return image_conv[h:h_end,w:]return image_conv[h:h_end,w:w_end]

2. Defining the Gaussian function based on the size of sigma(standard deviation).

**Formula:**

def GaussianBlurImage(image, sigma):

#image = imread(image)

image = Image.open(image)

image = np.asarray(image)

#print(image)

filter_size = 2 * int(4 * sigma + 0.5) + 1

gaussian_filter = np.zeros((filter_size, filter_size), np.float32)

m = filter_size//2

n = filter_size//2

for x in range(-m, m+1):

for y in range(-n, n+1):

x1 = 2*np.pi*(sigma**2)

x2 = np.exp(-(x**2 + y**2)/(2* sigma**2))

gaussian_filter[x+m, y+n] = (1/x1)*x2

im_filtered = np.zeros_like(image, dtype=np.float32)

for c in range(3):

im_filtered[:, :, c] = convolution(image[:, :, c], gaussian_filter) return (im_filtered.astype(np.uint8))

**Original Image:**

**Final Output Image after applying Gaussian Filter:**

Thanks for reading.