Why modern AI - is a dead end in technology

Oct 7 · 4 min read

The term “artificial intelligence” often refers to neural networks built on the technology of deep machine learning. Moreover, the technology of training neural networks is well established and is bearing fruit. However, not all scientists share the view that artificial intelligence should develop along this path. Someone even believes that such systems are “not worth trusting” and their development will not lead to anything good.

Artificial intelligence in the modern sense is not at all what many people think.

Why machine learning — is bad for human development?

In a large-scale work published on the pages of Technologyreview, a professor at New York University, a specialist in the field of cognitive science (cognitive science), Gary Marcus, spoke about the potential for the widespread use of neural networks based on deep machine learning.

First, the scientist believes that technology has obvious limitations. In particular, there has been talk for a long time about what is required to create the so-called “real AI”, which is suitable for solving a wide range of tasks, and not just one specific one, as is happening now. Existing AI systems have already reached the peak of their development and they practically have nowhere to grow. In addition, you can’t just take and, say, first teach one AI to drive a car, and the other to force it to be repaired and then combine the systems, creating a universal assistant. Artificial intellects simply will not be able to interact, since they “studied in different ways.”

You can train AI to play Atari better than humans, but making a good robomobile is unlikely. Although this task is also rather highly specialized. Deep learning works well in the analysis of big data, but the algorithms do not see a causal relationship and poorly perceive any change in conditions. Move the elements in the computer game by two to three pixels, and the trained AI will become ineffective. Make the go pitch not square, but rectangular, and artificial intelligence will lose even to a novice player.

How to make AI smarter

In order for the algorithms to become more efficient, they need to be “trained differently”. It is necessary to make sure that they begin to see the relationship of objects and the consequences of interacting with them. In this case, we will serve as the best example.

Professor Gary Marcus

Recruit intern students and in a few days they will begin to work on any problem — from law to medicine. Not because all of them are smart. And from the fact that people have a general idea of the world, and not a particular one.

The solution may be a kind of symbiosis of the “classical AI”, which sees the relationship and receives the solutions in an understandable way, and deep learning that can find a solution through “trial and error”. This may be some basic system of rules and regulations relating to the world. Based on them, AI systems will already be able to develop themselves in a certain area. Real artificial intelligence must realize how everything works in order to understand cause-effect relationships and easily switch from one task to another. Modern systems created using deep learning technology are simply not capable of this.

More information about Allbebet:


Written by


Allbebet is an infrastructure project in the field of sports, gaming and technology solutions in the scope of AI.

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch
Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore
Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade