Big Picture Machine Learning: Classifying Text with Neural Networks and TensorFlow
Déborah Mesquita
1.6K24

Just wondering if the code below:

weights = {
'hidden1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'biases1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}

should be

weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}

As the code which references this is:

def multilayer_perceptron(input_tensor, weights, biases):
layer_1_multiplication = tf.matmul(input_tensor, weights['h1'])
layer_1_addition = tf.add(layer_1_multiplication, biases['b1'])
layer_1_activation = tf.nn.relu(layer_1_addition)
# Hidden layer with RELU activation
layer_2_multiplication = tf.matmul(layer_1_activation, weights['h2'])

Best regards,

Erwin

Show your support

Clapping shows how much you appreciated Erwin Zoer’s story.