How We Built A 3D Printed Rube Goldberg Machine

Formlabs
Formlabs
Jul 8, 2015 · 5 min read

“A Rube Goldberg machine is a contraption, invention, device or apparatus that is deliberately over-engineered or overdone to perform a very simple task in a very complicated fashion, usually including a chain reaction.”

Source: Wikipedia

How many engineers does it take to over-engineer a Rube Goldberg machine? As a hardware company — we make desktop 3D printers — we had quite the team, to say the least. To celebrate the launch of our latest resin, Tough, we gathered a toolkit of engineers to help build a 3D printed Rube Goldberg machine.

Inspired by the Japanese children’s series Pitagora Suichi, we wanted the machine to be fun, surprising, and also showcase the properties of Tough Resin: durability, strength, and impact-resistance.

Here’s a quick peek at what our workspace looked like over the last few weeks:

The See-Saw

Engineer: Ava Chen

Laser-cut platform for see-saw. Resin bottle as pivot. And, we’re off!

Image for post
Image for post

The Gears

Engineer: Matt Keeter

Image for post
Image for post

“I designed a generic gear in Antimony, my homebrew open-source CAD package, then used the template to make gears of different shapes and sizes.

I was very happy with our strategy for closing the circuit: we put copper tape on the pipe, then relied on the (conductive) ball to close a circuit and start the gears turning.”

Here’s a screenshot of Antimony, showing the graph on the left and the output on the right.

Image for post
Image for post

…and here’s a close-up on the graph representation.

Image for post
Image for post

The Hammers

Engineers: Gagandeep Singh and Sven Werhmann

Image for post
Image for post

“It was incredibly hard to develop a system to allow the hammers to fire with the small weight and size of the steel ball. We were able to do some calculations and use some free body diagrams to find the optimal pivot point for the hammers.”

Image for post
Image for post

The Power Drill

Engineers: Hugh Medal and Dmitri Megretski

Image for post
Image for post

“Having many of the parts printed in Tough Resin really made the difference, allowing the drill-rig to keep trucking through multiple trial runs.”

Image for post
Image for post
Image for post
Image for post

“I knew I wanted something with a bit of old-fashioned cast-iron machinery flair, so I offset the faces on the cradles to make a decorative raised area. I also modeled the holes for the clamp screws slightly undersized, in order to drill them to final size and tap them to receive screws.”

Image for post
Image for post

“I needed something strong enough to hold up the entire drill, and not break under the twisting forces while driving the screws.”

Image for post
Image for post

“This simple part is a great demonstration of how 3D printing can make life easier. I needed something to hold wires onto the cordless drill battery, but, like all cordless tool batteries, it was a weird non-standard shape.

I took a few measurements and modeled the part within minutes. I was then able to print it out in under an hour using draft mode.”

The Chain + Sprocket Combo

Engineers: Darian Zigante and Valentin Trimaille

Image for post
Image for post

“The most exciting part in the entire making-of had to be when the chain and sprocket lifted the build platform for the first time. Seeing an entirely printed mechanical system, full of moving parts, on that scale, was very cool to watch.”

Image for post
Image for post

The Spoons + Elevator + Plinko Combo

Engineer: Adam Lebovitz

Image for post
Image for post

I wanted to show how shatter/fracture-resistant this resin is as compared to our Standard Resin. I also wanted the demonstration to be visually interesting. To keep the theme and continuity of the rolling steel ball going, I decided the ball should be what causes the pieces to flex.”

Image for post
Image for post
Image for post
Image for post
Image for post
Image for post

The Finale

Engineers: Clark Anthony and Meg Maupin

Image for post
Image for post

“Our station uses magnetic force to propel a 3D printed ball through a loop-de-loop made of PVC pipe. The ball drops at the end of the pipe, hitting the mousetrap and setting off the confetti cannon.”

Image for post
Image for post

“The biggest, but most fun, challenge, was picking up all the confetti during the shoot. :)”

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch

Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore

Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store