Financial Leadership in the Age of Analytics
The historical view of the Chief Financial Officer as a fastidious bean counter detached from the nuances of operational divisions is as far removed from the reality of modern corporate finance as paper ledgers and mechanical calculators.
With the continued evolution of financial and accounting software, the nature of finance has shifted from transactional and historical to real-time and analytical. CFOs are still responsible for traditional finance activities like FP&A, audit, compliance, and treasury management, but in the era of Big Data, effective CFOs additionally must become masters of business intelligence.
The key to meaningful business intelligence is the effective use of data, which has moved out of departmental information silos and into the operational realm. Once considered little more than a byproduct of a company’s business processes, data has become fuel for innovation and improvement.
In order to make effective use of company data, the modern CFO must understand the fundamentals of her company’s business. She must be more than a financial specialist, becoming an expert at using predictive insights to harness company data to drive corporate decisions.
Finance departments have a distinct view into all aspects of the company, which puts the well-informed CFO in a unique position to combine business operations knowledge with financial insights. Further, the adoption of data analytics is a natural fit for the finance department, where analysts are accustomed to finding trends, patterns and meaning in numbers. Just as in financial analysis, business analytics reveals trends, risks and opportunities. With more information, analysts can use data to further refine not only financial models, but also to identify risk and regulatory issues, increase productivity and efficiency, and evaluate new business opportunities.
Big Data
Businesses across all sectors are awash in an ever-increasing wave of data that continues to increase in volume, variety, velocity and veracity. The exponential growth comes from sources ranging from traditional databases and cloud-based systems to the public internet, IoT, and social media.
Growth of Big Data | Quick Stats
- Ongoing data production will be 44 times greater in 2020 than it was just ten years ago.
- The volume of collected and stored business data doubles every 1.2 years.
- By 2020, the accumulated volume of big data will increase from 4.4 zettabytes to ~ 44 zettabytes (44 trillion GB).
- IDC estimates that by 2020, business transactions (including both B2B and B2C) via the internet will reach up to 450 billion per day.
Businesses without a plan to use this wealth of data will likely drown in it.
Adoption and use of new technologies, including cloud-based accounting platforms, ERPs, machine learning, and other integrated process automation platforms will be integral to firms’ successful use of this ever-increasing volume of customer and business data.
Chief Financial Officer as Data Scientist
The proliferation and availability of business data has changed the way companies of all sizes evaluate business processes, opportunities and threats.
While solid financials will always be the ultimate yardstick on which a business is measured, there is a growing expectation that CFOs take on the role of data scientist, providing real-time valuable and predictive information between monthly close reports.
The agile CFO must shift focus to where the company is going — not where it has been. Too much time looking backward at lagging indicators opens the door for more nimble, forward-looking organizations to gain competitive advantage.
With access to and understanding of consolidated data, the CFO is able to collaborate with other divisions to establish and guide KPIs and metrics to connect data to core business issues. By establishing a data-driven corporate culture, the CFO can effectively drive results by leading an organization that is intelligent and responsive to data, which is used not only as a predictive tool, but as a key measurement of business success.
Effective use of Big Data to develop meaningful business analytics programs requires stakeholders to embrace the technologies of data science. The most valuable CFOs are those who adopt and cultivate their new supplemental role as “Chief Data Officer,” taking responsibility for using data and analytics to define key metrics and provide thoughtful interpretations of data from across departments and industry.
To implement a successful business analytics program, finance departments must understand the extent of data available to the business across disparate systems, work with IT to make data available across all departments, establish data analytics and visualization techniques, and ultimately deliver actionable information to key decision makers.
Use of Technology to Expand CFO Role
The good news is CFOs are not being asked to do more with less. They are being asked to do more with more. Smart CFOs embrace technology to shift focus of their team from transactions and reports to strategic thinking.
In order to achieve this new level of business intelligence, CFOs must embrace digitization to increase efficiency and data visibility.
The first step in establishing a data-driven culture is to increase automation to let software handle back-office transactional jobs, which will allow greater human focus on strategic initiatives and advanced analytics.
This may require an upgrade to the company’s accounting and finance software. For those who haven’t already, it is time to move away from legacy systems and reliance on spreadsheets, and adopt new technology to improve efficiency by automating the accounting process as much as possible.
Among the key benefits of finance automation are the reduction or elimination of manual business processes, reduction of data entry errors, the removal of human bias from analysis, and a move toward continuous accounting, which allows organizations to run most monthly close tasks in real-time.
Through the use of modern Enterprise Resource Planning (ERP) systems and Big Data platforms designed to deal with the vast amounts of data available, CFOs can drive greater business intelligence at a lower cost than legacy approaches that relied on data warehouses and siloed departmental information platforms.
- PC Mag’s Review of ERP Software
- Cloud-Based Accounting Software Reviews
- Big Data Tools for Small Business
Through careful selection and implementation of an effective ERP system, companies can integrate business applications to automate back office functions related to technology, services, and human resources. Areas ripe for automation include product lifecycle management, supply chain management, customer relationship management, sales order processing, and decision support systems. This integration will allow organizations to leverage data across the company — eliminating data silos and turning data into actionable information.
Machine Learning
Just as cloud-based accounting revolutionized corporate accounting by offering previously unimaginable levels of collaboration, accessibility, efficiency, timeliness and security, new technologies like machine learning will lead the next revolution in accounting and finance.
Through machine learning, time spent by humans scouring data for trends and correlations will be offloaded to software that automates complex processes and monitors anomalies in real time. Machine learning programs that use Natural Language Processing (NLP), Bayesian analysis, and other supervised and unsupervised methodologies to classify transactions and to define or refine data models used for forecasting will be the norm — sooner than many might realize.
Technology already exists that would allow learning machines to make a first pass of financial analysis to identify and highlight patterns, check for errors, and identify anomalies. Automating this manually intensive process would allow finance professionals to spend less time on data entry and review, freeing them to take a deeper dive into business analytics and make use of real-time information to drive business decisions.
Putting It All Together
“Data is not information, information is not knowledge, knowledge is not understanding, understanding is not wisdom.”
~Clifford Stoll
Successful application of business analytics allows companies to bridge the gap between finance and operations to give leadership the tools they need to accurately measure their performance in the moment rather than scouring over what happened in the past.
In this environment, the CFO then becomes messenger of findings up and down the chain of command: From the board of directors to front-line employees. Everyone in the company has to understand how the metrics impact them and their role in achieving them. The CFO must be able to communicate to each.
Building a proper data science team means assembling a group that includes domain experts (team members who understand company goals, industry fundamentals, and how to access and leverage existing data); analytics specialists; coders (R, Python, Java), database administrators for both SQL and NoSQL databases for unstructured data; machine learning specialists who understand how to use ML frameworks, algorithms and models; and Big Data experts who are proficient with tools like Hadoop and Spark.
Many of these specialties may already exist within the company, in which case the team could be set up as a functional team or a decentralized group. For smaller companies or startups, the data science team could consist of only two or three key individuals who perform multiple roles.
For an excellent overview of setting up a Data Science Team, see How to Structure a Data Science Team from altexsoft.
Regardless of business size and resource availability, all CFOs must find ways to leverage available resources to increase focus on business and customer data. Any business of a size and scale that warrants a dedicated Chief Financial Officer has the capacity to leverage automation and data analytics to improve business intelligence and performance.
Through thoughtful capital investment in automation technologies alone, CFOs can repurpose existing resources to focus on analytics to gain important operational and financial insights that can improve the bottom line. While ROI may vary from business to business, few can afford to be caught flat footed in the wave of Big Data that will continue to shape business operations for years to come.