This eye does not exist

Gonçalo Abreu
May 23 · 3 min read
These eyes do not exist

All the images shown in this story are generated by a computer without user input. thiseyedoesnotexist.com

A couple of weeks ago I was talking to my girlfriend. She had to do a university assignment about a new and emerging machine learning technology which would be impactful in the future. She asked me:

What’s poppin in machine learning right now?

I couldn’t think of anything else that was visual enough so I said:

Actually, there is this cool new thing called generative adversarial networks

My head started going a thousand miles — “how the hell am I going to explain this stuff?”

(WARNING: I do terrible analogies)

Well, I knew she liked makeup so I told her the following:

Imagine that you are a makeup artist of some sort and you need to conceptualize some new eye makeup brand. But you have a problem, you are out of ideas. Generative adversarial networks allow you to create stuff that doesn’t exist, lets say, photographs of eyes with makeup. This algorithm essentially allows you to “dream up” new stuff

Imagine that you need to post another Instagram eye photo to promote your brand, but for some reason you don’t have the possibility of hiring a photographer or a model. Why not dream up a new photo, or thousands of them?

Ok, that was weird, oversimplified and I can already hear some machine learning purists screaming (good luck on trying to explain to your family and friends what you understand philosophically about fitting a generative model on images and using it to sample “new” ones. “Dreaming” seems like a good way after all).

I thought that this was the perfect excuse to create my first GAN (I also miss working with images since I have been looking at a lot of tabular data lately. Aren’t we all!?). Since I couldn’t find an “eye makeup” dataset I had to create one. There will be a future story describing that process. (Generating a dataset from unlabeled image data). Here is a teaser,

Generating a dataset using unlabeled images

The following video shows the network capability of “dreaming”:

Checkout the network learning how to generate eyes with makeup:

Because the dataset is not of the highest quality there are a lot of imperfections on the generated samples. Overall the results are quite rewarding.

I would love to publish the dataset I used to train the GAN. In case anyone understands the legality issues about this subject and wants to advise me for free, please feel free to do so at,

abriosipublic@gmail.com

To see more results visit https://thiseyedoesnotexist.com/.

Stay tuned for second part of this series, where I’m going to explain the process used to generate the dataset.

Notes:

Ian Goodfellow, who came up with the first GAN formulation recently appeared on Lex Fridman MIT Artificial Intelligence podcast and gave wonderful insights. In case you want to know more about the history of GANs you should watch it: https://youtu.be/Z6rxFNMGdn0

The architecture used to generate this images was the one described on “Karras, Tero, et al. “Progressive growing of gans for improved quality, stability, and variation.” arXiv preprint arXiv:1710.10196(2017).”

To train the network the repository on https://github.com/tkarras/progressive_growing_of_gans was used.

Heavily influenced by (you should check it out),

https://thispersondoesnotexist.com/

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch
Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore
Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade