(ML) COVID-19 Cases Prediction (Regression) -ML2021Spring

YEN HUNG CHENG
9 min readOct 8, 2023

--

Photo by Martin Sanchez on Unsplash

Baseline

simple -> 2.04826

medium -> 1.36937

strong -> 0.89266

Kaggle

Hints

Simple Baseline

✅Run sample code

Medium Baseline

✅Feature selection: 40 states + 2 `tested_positive` (`TODO` in dataset)

Strong Baseline

✅Feature selection (what other features are useful?)

✅DNN architecture (layers? dimension? activation function?)

✅Training (mini-batch? optimizer? learning rate?)

✅L2 regularization

❎There are some mistakes in the sample code, can you find them?

tr_path = 'covid.train.csv'  # path to training data
tt_path = 'covid.test.csv' # path to testing data

!gdown --id '19CCyCgJrUxtvgZF53vnctJiOJ23T5mqF' --output covid.train.csv
!gdown --id '1CE240jLm2npU-tdz81-oVKEF3T2yfT1O' --output covid.test.csv

Import Some Packages

# PyTorch
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# For data preprocess
import numpy as np
import csv
import os

# For plotting
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure

myseed = 42069 # set a random seed for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False


np.random.seed(myseed)
torch.manual_seed(myseed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(myseed)

Some Utilities

# CUDA  
# def get_device():
# ''' Get device (if GPU is available, use GPU) '''
# return 'mps' if torch.cuda.is_available() else 'cpu'

# MPS (Apple Metal)
def get_device():
''' Get device (if GPU is available, use GPU) '''
return "mps" if getattr(torch,'has_mps',False) \
else "gpu" if torch.cuda.is_available() else "cpu"



def plot_learning_curve(loss_record, title=''):
''' Plot learning curve of your DNN (train & dev loss) '''
total_steps = len(loss_record['train'])
x_1 = range(total_steps)
x_2 = x_1[::len(loss_record['train']) // len(loss_record['dev'])]
figure(figsize=(6, 4))
plt.plot(x_1, loss_record['train'], c='tab:red', label='train')
plt.plot(x_2, loss_record['dev'], c='tab:cyan', label='dev')
plt.ylim(0.0, 5.)
plt.xlabel('Training steps')
plt.ylabel('MSE loss')
plt.title('Learning curve of {}'.format(title))
plt.legend()
plt.show()


def plot_pred(dv_set, model, device, lim=35., preds=None, targets=None):
''' Plot prediction of your DNN '''
if preds is None or targets is None:
model.eval()
preds, targets = [], []
for x, y in dv_set:
x, y = x.to(device), y.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
targets.append(y.detach().cpu())
preds = torch.cat(preds, dim=0).numpy()
targets = torch.cat(targets, dim=0).numpy()

figure(figsize=(5, 5))
plt.scatter(targets, preds, c='r', alpha=0.5)
plt.plot([-0.2, lim], [-0.2, lim], c='b')
plt.xlim(-0.2, lim)
plt.ylim(-0.2, lim)
plt.xlabel('ground truth value')
plt.ylabel('predicted value')
plt.title('Ground Truth v.s. Prediction')
plt.show()

Preprocess

We have three kinds of datasets:

  • train: for training
  • dev: for validation
  • test: for testing (w/o target value)

Dataset

The COVID19Dataset below does:

  • read .csv files
  • extract features
  • split covid.train.csv into train/dev sets
  • normalize features

Finishing TODO below might make you pass medium baseline.

class COVID19Dataset(Dataset):
''' Dataset for loading and preprocessing the COVID19 dataset '''
def __init__(self,
path,
mode='train',
target_only=False):
self.mode = mode

# Read data into numpy arrays
with open(path, 'r') as fp:
data = list(csv.reader(fp))
data = np.array(data[1:])[:, 1:].astype(float)

if not target_only:
feats = list(range(93))
else:
# TODO: Using 40 states & 2 tested_positive features (indices = 57 & 75)
pass

if mode == 'test':
# Testing data
# data: 893 x 93 (40 states + day 1 (18) + day 2 (18) + day 3 (17))
data = data[:, feats]
self.data = torch.FloatTensor(data)
else:
# Training data (train/dev sets)
# data: 2700 x 94 (40 states + day 1 (18) + day 2 (18) + day 3 (18))
target = data[:, -1]
data = data[:, feats]

# Splitting training data into train & dev sets
if mode == 'train':
indices = [i for i in range(len(data)) if i % 10 != 0]
elif mode == 'dev':
indices = [i for i in range(len(data)) if i % 10 == 0]

# Convert data into PyTorch tensors
self.data = torch.FloatTensor(data[indices])
self.target = torch.FloatTensor(target[indices])

# Normalize features (you may remove this part to see what will happen)
self.data[:, 40:] = \
(self.data[:, 40:] - self.data[:, 40:].mean(dim=0, keepdim=True)) \
/ self.data[:, 40:].std(dim=0, keepdim=True)

self.dim = self.data.shape[1]

print('Finished reading the {} set of COVID19 Dataset ({} samples found, each dim = {})'
.format(mode, len(self.data), self.dim))

def __getitem__(self, index):
# Returns one sample at a time
if self.mode in ['train', 'dev']:
# For training
return self.data[index], self.target[index]
else:
# For testing (no target)
return self.data[index]

def __len__(self):
# Returns the size of the dataset
return len(self.data)

DataLoader

A DataLoader loads data from a given Dataset into batches.

def prep_dataloader(path, mode, batch_size, n_jobs=0, target_only=False):
''' Generates a dataset, then is put into a dataloader. '''
dataset = COVID19Dataset(path, mode=mode, target_only=target_only) # Construct dataset
dataloader = DataLoader(
dataset, batch_size,
shuffle=(mode == 'train'), drop_last=False,
num_workers=n_jobs, pin_memory=True) # Construct dataloader
return dataloader

Deep Neural Network

NeuralNet is an nn.Module designed for regression. The DNN consists of 2 fully-connected layers with ReLU activation. This module also included a function cal_loss for calculating loss.

class NeuralNet(nn.Module):
''' A simple fully-connected deep neural network '''
def __init__(self, input_dim):
super(NeuralNet, self).__init__()

# Define your neural network here
# TODO: How to modify this model to achieve better performance?
self.net = nn.Sequential(
nn.Linear(input_dim, 64),
nn.ReLU(),
nn.Linear(64, 1)
)

# Mean squared error loss
self.criterion = nn.MSELoss(reduction='mean')

def forward(self, x):
''' Given input of size (batch_size x input_dim), compute output of the network '''
return self.net(x).squeeze(1)

def cal_loss(self, pred, target):
''' Calculate loss '''
# TODO: you may implement L1/L2 regularization here
return self.criterion(pred, target)

Train/Dev/Test

Training

def train(tr_set, dv_set, model, config, device):
''' DNN training '''

n_epochs = config['n_epochs'] # Maximum number of epochs

# Setup optimizer
optimizer = getattr(torch.optim, config['optimizer'])(
model.parameters(), **config['optim_hparas'])

min_mse = 1000.
loss_record = {'train': [], 'dev': []} # for recording training loss
early_stop_cnt = 0
epoch = 0
while epoch < n_epochs:
model.train() # set model to training mode
for x, y in tr_set: # iterate through the dataloader
optimizer.zero_grad() # set gradient to zero
x, y = x.to(device), y.to(device) # move data to device (cpu/cuda)
pred = model(x) # forward pass (compute output)
mse_loss = model.cal_loss(pred, y) # compute loss
mse_loss.backward() # compute gradient (backpropagation)
optimizer.step() # update model with optimizer
loss_record['train'].append(mse_loss.detach().cpu().item())

# After each epoch, test your model on the validation (development) set.
dev_mse = dev(dv_set, model, device)
if dev_mse < min_mse:
# Save model if your model improved
min_mse = dev_mse
print('Saving model (epoch = {:4d}, loss = {:.4f})'
.format(epoch + 1, min_mse))
torch.save(model.state_dict(), config['save_path']) # Save model to specified path
early_stop_cnt = 0
else:
early_stop_cnt += 1

epoch += 1
loss_record['dev'].append(dev_mse)
if early_stop_cnt > config['early_stop']:
# Stop training if your model stops improving for "config['early_stop']" epochs.
break

print('Finished training after {} epochs'.format(epoch))
return min_mse, loss_record

Validation

def dev(dv_set, model, device):
model.eval() # set model to evalutation mode
total_loss = 0
for x, y in dv_set: # iterate through the dataloader
x, y = x.to(device), y.to(device) # move data to device (cpu/cuda)
with torch.no_grad(): # disable gradient calculation
pred = model(x) # forward pass (compute output)
mse_loss = model.cal_loss(pred, y) # compute loss
total_loss += mse_loss.detach().cpu().item() * len(x) # accumulate loss
total_loss = total_loss / len(dv_set.dataset) # compute averaged loss

return total_loss

Testing

def test(tt_set, model, device):
model.eval() # set model to evalutation mode
preds = []
for x in tt_set: # iterate through the dataloader
x = x.to(device) # move data to device (cpu/cuda)
with torch.no_grad(): # disable gradient calculation
pred = model(x) # forward pass (compute output)
preds.append(pred.detach().cpu()) # collect prediction
preds = torch.cat(preds, dim=0).numpy() # concatenate all predictions and convert to a numpy array
return preds

Setup Hyper-parameters

config contains hyper-parameters for training and the path to save your model.

device = get_device()                 # get the current available device ('cpu' or 'cuda')
print(device)

os.makedirs('models', exist_ok=True) # The trained model will be saved to ./models/
target_only = False # TODO: Using 40 states & 2 tested_positive features

# TODO: How to tune these hyper-parameters to improve your model's performance?
config = {
'n_epochs': 3000, # maximum number of epochs
'batch_size': 270, # mini-batch size for dataloader
'optimizer': 'SGD', # optimization algorithm (optimizer in torch.optim)
'optim_hparas': { # hyper-parameters for the optimizer (depends on which optimizer you are using)
'lr': 0.001, # learning rate of SGD
'momentum': 0.9 # momentum for SGD
},
'early_stop': 200, # early stopping epochs (the number epochs since your model's last improvement)
'save_path': 'models/model.pth' # your model will be saved here
}

Load data and model

tr_set = prep_dataloader(tr_path, 'train', config['batch_size'], target_only=target_only)
dv_set = prep_dataloader(tr_path, 'dev', config['batch_size'], target_only=target_only)
tt_set = prep_dataloader(tt_path, 'test', config['batch_size'], target_only=target_only)
model = NeuralNet(tr_set.dataset.dim).to(device)  # Construct model and move to device

Start Training!

model_loss, model_loss_record = train(tr_set, dv_set, model, config, device)
plot_learning_curve(model_loss_record, title='deep model')
del model
model = NeuralNet(tr_set.dataset.dim).to(device)
ckpt = torch.load(config['save_path'], map_location='cpu') # Load your best model
model.load_state_dict(ckpt)
plot_pred(dv_set, model, device) # Show prediction on the validation set

Testing

The predictions of your model on testing set will be stored at pred.csv.

def save_pred(preds, file):
''' Save predictions to specified file '''
print('Saving results to {}'.format(file))
with open(file, 'w') as fp:
writer = csv.writer(fp)
writer.writerow(['id', 'tested_positive'])
for i, p in enumerate(preds):
writer.writerow([i, p])

preds = test(tt_set, model, device) # predict COVID-19 cases with your model
save_pred(preds, 'pred.csv') # save prediction file to pred.csv

Simple Baseline

Without modifying any code, I submitted my predictions and I got 1.43395 which is more than the simple baseline of 2.04826

Medium Baseline

I have added the following code in the COVID19Dataset class in the else block of the target_only condition, based on your reference instructions.

        if not target_only:
feats = list(range(93))
else:
# TODO: Using 40 states & 2 tested_positive features (indices = 57 & 75)
feats = list(range(40)) + [57, 75]
pass

Train only using the ‘tested_positive’ feature.

After making the modification mentioned above and submitting my results, I achieved a score of 1.06242, surpassing the medium baseline of 1.36937.

Strong Baseline

Feature selection

Here are all 18 features, and I ultimately selected 4 of the more important ones.

[‘cli’, ‘ili’, ‘hh_cmnty_cli’, ‘nohh_cmnty_cli’, ‘wearing_mask’, ‘travel_outside_state’, ‘work_outside_home’, ‘shop’, ‘restaurant’, ‘spent_time’, ‘large_event’, ‘public_transit’, ‘anxious’, ‘depressed’, ‘felt_isolated’, ‘worried_become_ill’, ‘worried_finances’, ‘tested_positive’]

indices = 40, 42, 43, 57, 58, 60, 61, 75, 76, 78, 79

DNN architecture

The neural network I’ve built is as follows:

        self.net = nn.Sequential(
nn.Linear(input_dim, 32),
nn.ELU(),
nn.Linear(32, 32),
nn.ELU(),
nn.Linear(32, 32),
nn.ELU(),
nn.Linear(32, 32),
nn.ELU(),
nn.Linear(32, 1)
)

Training

Here are my tuned hyper-parameter.

config = {
'n_epochs': 8000, # maximum number of epochs
'batch_size': 64, # mini-batch size for dataloader
'optimizer': 'RAdam', # optimization algorithm (optimizer in torch.optim)
'optim_hparas': { # hyper-parameters for the optimizer (depends on which optimizer you are using)
'lr': 0.001, # learning rate of SGD
# 'momentum': 0.9, # momentum for SGD
},
'early_stop': 200, # early stopping epochs (the number epochs since your model's last improvement)
'save_path': 'models/model.pth' # your model will be saved here
}

When using SGD as the optimizer, it is advisable to pair it with a smaller learning rate and larger lr_decay_epochs.

L2 regularization

    def cal_loss(self, pred, target, l1_lambda=0.01, l2_lambda=0.1):    
# Move pred and target to the same device
pred = pred.to(target.device)

# Calculate mean squared error loss
mse_loss = self.criterion(pred, target)

# Calculate L1 regularization
l1_reg = torch.tensor(0.0, device=target.device) # Use the same device as target
for param in self.parameters():
l1_reg += torch.norm(param, 1)

# Calculate L2 regularization
l2_reg = torch.tensor(0.0, device=target.device) # Use the same device as target
for param in self.parameters():
l2_reg += torch.norm(param, 2)

# Combine loss with regularization terms
total_loss = mse_loss + l1_lambda * l1_reg + l2_lambda * l2_reg

return total_loss

I didn’t find any errors in the sample code, but in the end, I achieved a Private Score of 0.95317, which didn’t reach the Strong Baseline of 0.89266.

Since I wasn’t very familiar with regression tasks, I came up with a novel idea later on. Given that there are 40 states, why not train a separate model for each state? So, I trained 40 models for each individual state to make predictions. However, I ended up with even worse results.

Reference

E.g.
Source: Heng-Jui Chang @ NTUEE (https://github.com/ga642381/ML2021-Spring/blob/main/HW01/HW01.ipynb)Download Data

--

--