TensorFlow Hub for computer vision-part_1
in this series we will discover how to use TensorFlow Hub to reuse trained models for computer vision tasks such as image classification , object detection , style transfer and GANS
what is TensorFlow Hub
TensorFlow Hub is a repository of trained machine learning models ready for fine-tuning and deployable anywhere. Reuse trained models like BERT and Faster R-CNN with just a few lines of code.
you can check more on this link
object detection
in the first article we will discuss object detection , and we will continue the other topics in the following articles.
tensorhub has a lot models for object detection task such as centernet ,SSD and FasterRCNN you can check them all on this link
Step-1: import needed libraries
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
import tensorflow_hub as hub
print('TensorFlow version: ', tf.__version__)
print('TensorFlow Hub version: ', hub.__version__)
step 2 adjusting the model paths
getting the models from this link , these models are trained on coco dataset
model_paths = {
'CenterNet HourGlass104 512x512' : 'https://tfhub.dev/tensorflow/centernet/hourglass_512x512/1',
'CenterNet HourGlass104 Keypoints 512x512' : 'https://tfhub.dev/tensorflow/centernet/hourglass_512x512_kpts/1',
'CenterNet HourGlass104 1024x1024' : 'https://tfhub.dev/tensorflow/centernet/hourglass_1024x1024/1',
'CenterNet HourGlass104 Keypoints 1024x1024' : 'https://tfhub.dev/tensorflow/centernet/hourglass_1024x1024_kpts/1',
'CenterNet Resnet50 V1 FPN 512x512' : 'https://tfhub.dev/tensorflow/centernet/resnet50v1_fpn_512x512/1',
'CenterNet Resnet50 V1 FPN Keypoints 512x512' : 'https://tfhub.dev/tensorflow/centernet/resnet50v1_fpn_512x512_kpts/1',
'CenterNet Resnet101 V1 FPN 512x512' : 'https://tfhub.dev/tensorflow/centernet/resnet101v1_fpn_512x512/1',
'CenterNet Resnet50 V2 512x512' : 'https://tfhub.dev/tensorflow/centernet/resnet50v2_512x512/1',
'CenterNet Resnet50 V2 Keypoints 512x512' : 'https://tfhub.dev/tensorflow/centernet/resnet50v2_512x512_kpts/1',
'EfficientDet D0 512x512' : 'https://tfhub.dev/tensorflow/efficientdet/d0/1',
'EfficientDet D1 640x640' : 'https://tfhub.dev/tensorflow/efficientdet/d1/1',
'EfficientDet D2 768x768' : 'https://tfhub.dev/tensorflow/efficientdet/d2/1',
'EfficientDet D3 896x896' : 'https://tfhub.dev/tensorflow/efficientdet/d3/1',
'EfficientDet D4 1024x1024' : 'https://tfhub.dev/tensorflow/efficientdet/d4/1',
'EfficientDet D5 1280x1280' : 'https://tfhub.dev/tensorflow/efficientdet/d5/1',
'EfficientDet D6 1280x1280' : 'https://tfhub.dev/tensorflow/efficientdet/d6/1',
'EfficientDet D7 1536x1536' : 'https://tfhub.dev/tensorflow/efficientdet/d7/1',
'SSD MobileNet v2 320x320' : 'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2',
'SSD MobileNet V1 FPN 640x640' : 'https://tfhub.dev/tensorflow/ssd_mobilenet_v1/fpn_640x640/1',
'SSD MobileNet V2 FPNLite 320x320' : 'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/fpnlite_320x320/1',
'SSD MobileNet V2 FPNLite 640x640' : 'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/fpnlite_640x640/1',
'SSD ResNet50 V1 FPN 640x640 (RetinaNet50)' : 'https://tfhub.dev/tensorflow/retinanet/resnet50_v1_fpn_640x640/1',
'SSD ResNet50 V1 FPN 1024x1024 (RetinaNet50)' : 'https://tfhub.dev/tensorflow/retinanet/resnet50_v1_fpn_1024x1024/1',
'SSD ResNet101 V1 FPN 640x640 (RetinaNet101)' : 'https://tfhub.dev/tensorflow/retinanet/resnet101_v1_fpn_640x640/1',
'SSD ResNet101 V1 FPN 1024x1024 (RetinaNet101)' : 'https://tfhub.dev/tensorflow/retinanet/resnet101_v1_fpn_1024x1024/1',
'SSD ResNet152 V1 FPN 640x640 (RetinaNet152)' : 'https://tfhub.dev/tensorflow/retinanet/resnet152_v1_fpn_640x640/1',
'SSD ResNet152 V1 FPN 1024x1024 (RetinaNet152)' : 'https://tfhub.dev/tensorflow/retinanet/resnet152_v1_fpn_1024x1024/1',
'Faster R-CNN ResNet50 V1 640x640' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet50_v1_640x640/1',
'Faster R-CNN ResNet50 V1 1024x1024' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet50_v1_1024x1024/1',
'Faster R-CNN ResNet50 V1 800x1333' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet50_v1_800x1333/1',
'Faster R-CNN ResNet101 V1 640x640' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet101_v1_640x640/1',
'Faster R-CNN ResNet101 V1 1024x1024' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet101_v1_1024x1024/1',
'Faster R-CNN ResNet101 V1 800x1333' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet101_v1_800x1333/1',
'Faster R-CNN ResNet152 V1 640x640' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet152_v1_640x640/1',
'Faster R-CNN ResNet152 V1 1024x1024' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet152_v1_1024x1024/1',
'Faster R-CNN ResNet152 V1 800x1333' : 'https://tfhub.dev/tensorflow/faster_rcnn/resnet152_v1_800x1333/1',
'Faster R-CNN Inception ResNet V2 640x640' : 'https://tfhub.dev/tensorflow/faster_rcnn/inception_resnet_v2_640x640/1',
'Faster R-CNN Inception ResNet V2 1024x1024' : 'https://tfhub.dev/tensorflow/faster_rcnn/inception_resnet_v2_1024x1024/1',
'Mask R-CNN Inception ResNet V2 1024x1024' : 'https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1'
}
step 4 The TensorFlow Model Garden cloning
The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users.
!git clone --depth 1 https://github.com/tensorflow/models
step 5 compiling commands
%%bash
# https://linuxcommandlibrary.com/man/protoc
sudo apt install -y protobuf-compiler
cd models/research/
protoc object_detection/protos/*.proto --python_out=.
cp object_detection/packages/tf2/setup.py .
python -m pip install .
step 6 importing needed modules
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils
from object_detection.utils import ops
label_map_util
is a module for working with label maps in object detection tasks.- It provides functions to load and manipulate label maps, which are typically used to map class IDs to their corresponding class names in object detection models.
- You can use it to parse label maps, retrieve class labels, and perform other label-related tasks.
visualization_utils
is a module for visualizing object detection results.- It provides functions for drawing bounding boxes, labels, and other visual elements on images or frames.
- This module is useful for visualizing the output of object detection models, making it easier to understand and interpret the results.
- The
ops
module typically contains custom TensorFlow operations and functions that are used internally by the object detection models. - These operations are often related to low-level computations required for object detection, and you may not need to interact with this module directly in most cases.
- It can include functions for anchor generation, region proposal network (RPN) operations, or other low-level operations used in the model’s architecture.
step 8 getting the labels
path_to_labels = '/content/models/research/object_detection/data/mscoco_label_map.pbtxt'
classes_indices = label_map_util.create_category_index_from_labelmap(path_to_labels, use_display_name = True)
you can check the labels
step 9 : loading the model
model_name = 'CenterNet HourGlass104 Keypoints 512x512' # @param ['CenterNet HourGlass104 512x512','CenterNet HourGlass104 Keypoints 512x512','CenterNet HourGlass104 1024x1024','CenterNet HourGlass104 Keypoints 1024x1024','CenterNet Resnet50 V1 FPN 512x512','CenterNet Resnet50 V1 FPN Keypoints 512x512','CenterNet Resnet101 V1 FPN 512x512','CenterNet Resnet50 V2 512x512','CenterNet Resnet50 V2 Keypoints 512x512','EfficientDet D0 512x512','EfficientDet D1 640x640','EfficientDet D2 768x768','EfficientDet D3 896x896','EfficientDet D4 1024x1024','EfficientDet D5 1280x1280','EfficientDet D6 1280x1280','EfficientDet D7 1536x1536','SSD MobileNet v2 320x320','SSD MobileNet V1 FPN 640x640','SSD MobileNet V2 FPNLite 320x320','SSD MobileNet V2 FPNLite 640x640','SSD ResNet50 V1 FPN 640x640 (RetinaNet50)','SSD ResNet50 V1 FPN 1024x1024 (RetinaNet50)','SSD ResNet101 V1 FPN 640x640 (RetinaNet101)','SSD ResNet101 V1 FPN 1024x1024 (RetinaNet101)','SSD ResNet152 V1 FPN 640x640 (RetinaNet152)','SSD ResNet152 V1 FPN 1024x1024 (RetinaNet152)','Faster R-CNN ResNet50 V1 640x640','Faster R-CNN ResNet50 V1 1024x1024','Faster R-CNN ResNet50 V1 800x1333','Faster R-CNN ResNet101 V1 640x640','Faster R-CNN ResNet101 V1 1024x1024','Faster R-CNN ResNet101 V1 800x1333','Faster R-CNN ResNet152 V1 640x640','Faster R-CNN ResNet152 V1 1024x1024','Faster R-CNN ResNet152 V1 800x1333','Faster R-CNN Inception ResNet V2 640x640','Faster R-CNN Inception ResNet V2 1024x1024','Mask R-CNN Inception ResNet V2 1024x1024']
model_path = model_paths[model_name]
model = hub.load(model_path)
step 10 : loading your image
image = Image.open('/content/Scientists.jpg')
here we will add a dimension at the beginning to be the batch size so we can pass it to the model
image = np.array(image.getdata()).reshape((1, height, width, 3)).astype(np.uint8)
image.shape
final step : testing the model
results = model(image)
image_detection = image.copy()
visualization_utils.visualize_boxes_and_labels_on_image_array(
image_detection[0],
result['detection_boxes'][0],
(result['detection_classes'][0]).astype(int),
result['detection_scores'][0],
classes_indices,
max_boxes_to_draw = 200,
use_normalized_coordinates=True,
min_score_thresh=.30
)
plt.figure(figsize=(24,32))
plt.imshow(image_detection[0])
plt.show()