Automated Social media management on your mobile device using MiniCPM

Emmanuel Mark Ndaliro
3 min readAug 27, 2024

--

The implementation leverages MiniCPM-V’s natural language processing (NLP) and computer vision capabilities, integrated into a mobile app. The app handles various automation tasks such as reading and categorizing emails, scheduling posts, responding to social media messages, and analyzing social media metrics.

Implementation Plan

  1. Task Management Framework: Use Flutter as the front end, integrating APIs like Gmail API for emails, and the official APIs for Instagram, Twitter, and Facebook for social media management. The backend can be powered by a Python Flask server running MiniCPM-V for handling NLP and image processing tasks.
  2. Setting Up MiniCPM-V: Deploy MiniCPM-V on a local server or a cloud-based setup (e.g., AWS). MiniCPM-V will perform tasks like extracting content from emails, generating captions for social media posts, and interpreting sentiment from comments.

Code Implementation

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;
import 'dart:convert';

void main() => runApp(SocialManagerApp());
class SocialManagerApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
home: TaskManagerScreen(),
);
}
}
class TaskManagerScreen extends StatefulWidget {
@override
_TaskManagerScreenState createState() => _TaskManagerScreenState();
}
class _TaskManagerScreenState extends State<TaskManagerScreen> {
String _status = "Idle";
Future<void> _checkEmails() async {
setState(() {
_status = "Checking Emails...";
});
// Replace with your API endpoint
final response = await http.get(Uri.parse('http://localhost:5000/check_emails'));
if (response.statusCode == 200) {
final emailData = json.decode(response.body);
// Process and display emails
setState(() {
_status = "Emails Checked!";
});
} else {
setState(() {
_status = "Failed to check emails";
});
}
}
Future<void> _manageSocialMedia() async {
setState(() {
_status = "Managing Social Media...";
});
// Replace with your API endpoint
final response = await http.post(
Uri.parse('http://localhost:5000/manage_social'),
headers: {'Content-Type': 'application/json'},
body: json.encode({
'platforms': ['Instagram', 'Twitter', 'Facebook'],
'task': 'schedule_post',
'content': 'New post for all platforms!'
}),
);
if (response.statusCode == 200) {
setState(() {
_status = "Social Media Managed!";
});
} else {
setState(() {
_status = "Failed to manage social media";
});
}
}
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: Text('Social Media and Email Manager')),
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: [
ElevatedButton(
onPressed: _checkEmails,
child: Text('Check Emails'),
),
SizedBox(height: 20),
ElevatedButton(
onPressed: _manageSocialMedia,
child: Text('Manage Social Media'),
),
SizedBox(height: 20),
Text('Status: $_status'),
],
),
),
);
}
}

Backend (Python + Flask) Implementation

The backend uses Flask to interact with the MiniCPM-V model:

from flask import Flask, request, jsonify
import json

app = Flask(__name__)
@app.route('/check_emails', methods=['GET'])
def check_emails():
# Use MiniCPM-V to read and categorize emails
# For example, extract important content and summarize
emails = [{"subject": "Meeting Reminder", "content": "Meeting at 3 PM"}]
return jsonify(emails)
@app.route('/manage_social', methods=['POST'])
def manage_social():
data = request.json
platforms = data['platforms']
task = data['task']
content = data['content']

# Example: Use MiniCPM-V to generate captions, analyze sentiments, and schedule posts
for platform in platforms:
# Interact with Instagram/Twitter/Facebook APIs for posting
pass

return jsonify({"status": "success"})
if __name__ == '__main__':
app.run(debug=True)

Features

  • Email Automation: The app checks emails, extracts key content, and categorizes it (e.g., urgent, to-do, reminders).
  • Social Media Management: Automatically schedules posts across platforms, responds to comments based on sentiment analysis, and tracks metrics like engagement and reach.

Benefits of MiniCPM-V for this Automation

  • NLP for Content Understanding: MiniCPM-V excels at extracting and summarizing text, making it ideal for reading and categorizing emails.
  • Multimodal Capabilities: It can handle image and video inputs for social media tasks like generating captions, interpreting comments, and analyzing visual content.
  • Efficiency: The model’s lightweight nature makes it perfect for mobile devices, ensuring smooth performance even during heavy tasks.

This implementation showcases how MiniCPM-V can be effectively used for automating everyday tasks like email management and social media interactions directly from your phone. By integrating this powerful MLLM into a Flutter-based app, you can achieve seamless automation with high accuracy and efficiency.

This setup provides a solid foundation for expanding into more complex automation like content moderation, real-time translation, and even AI-powered chatbots — all running efficiently on mobile devices.

--

--

Emmanuel Mark Ndaliro

Developer | Python | Machine Learning | Automation | Flutter. I'm doing this to buy an F1 Race Ticket