Project Dreamcatcher

Creativity is the Key to Design for Additive Manufacturing

Since the beginning of the first industrial revolution and the technological advances that came in the 19th century, engineers and manufacturers have been confronted by limitations of that new technology in terms of what they can produce, and how they produce it. Today, at the beginning of the digital manufacturing revolution with the advancements of 3D printing and additive manufacturing (AM) technologies, limitations still exist. These limitations are numerous, but notable among them is the restrictive nature of the tools we need to create digital 3D models. The 3D printing industry is three decades old, and much has changed in that time. 3D printing started out as a slow and expensive process used for prototyping. The technology hardware has advanced tremendously since then with developments that have seen the speed of 3D printing processes improve dramatically, and for some applications, approach the speeds of traditional manufacturing methods. One result of these advances is that increasing numbers of businesses are adopting 3D printing as a manufacturing solution. Designing parts for 3D printing, however, is still one part of the equation were great limitations exist, which will soon be compounded by the fact that such design skills will be in greater demand.

We Need Creative Thinking in Design for AM

It is no secret that the capabilities of AM offer designers much greater freedom when compared with traditional manufacturing processes, allowing for the creation of complex geometries that were unimaginable before the advent of AM. Lighter weight composed of lattice structures and customised consumer products are just a couple of examples of applications were AM is thriving. However, there is much greater potential for AM and the key element to unlocking the full potential of AM is through the pre-process design phase.

Complete freedom of the design process itself cannot be unlocked solely by the imagination of the designer. Skills and tools are vital as well. But there is still disparity here. Designers and engineers who are using 3D printing today were taught to think in a specific when designing new products, tailored to the capabilities of traditional manufacturing methods. This way of thinking is deeply embedded, too, which ultimately limits many designers from freeing their creativity. The reason why there are so many artists using 3D printing is that they have discovered a new creative freedom for innovative designs that can be realized physically with 3D printing.

Traditional Design Skills are Outdated

Besides creative minds, design tools are needed that are both fast and flexible within the design process. In the survey conducted by Fictiv, results show that engineers and designers spend most of their time designing in 3D CAD. As a design engineer, I have spent a great deal of time working with various 3D CAD tools, and understand how time-consuming it can be creating a quality 3D model. Experience suggests that using traditional, widely available modelling software often results in designers getting lost in the design process, and, limited by the software itself, ultimately losing the actual intent of the design. I believe this is because the workflow of such programmes is focused on how to create geometry, rather than on design itself. As an example, I often found that I was focused more on working out how to model a part or product than on creating a design solution. Traditional 3D CAD design tools are obsolete for 3D printing — they were built to help engineers prepare parts for traditional manufacturing methods, AM demands something different.

A New Approach — Design Tools for AM

It is already happening. There are several types of software available today that have been created specifically for design for AM (DfAM). However, often each group class is oriented to a particular niche application of 3D printing. With increasing implementation in the production of end-use parts, particularly in the automotive and aerospace industries, there is an increasing focus on the development of topology optimization and lattice design software.

Topology Optimization Design

Topology optimization in Autodesk Fusion 360

Topology optimization tools allow the user to create structurally efficient geometry, resulting in organic shapes with unprecedented strength-to-weight ratios. The software works in a similar way to analysis simulation tools with one key difference. It generates an ideal form based on assigned material, loads and constraints. However, in order to function correctly, a base shape must be defined prior the analysis. After analysis is complete, the designer needs to recreate the model’s geometry based on the optimized shape. The workflow is faster than with traditional modelling techniques because the design geometry already has an optimized form. Traditionally, without this digital tool, designers would create a design, verify it with analysis, modify the design according to the analysis results, and repeat the process — often numerous times — until the optimum results are achieved.

Lattice Design

Lattice design in nTopology.

Lattice design tools are used to create lightweight parts while maintaining high functioning mechanical performance. Like topology optimization, it is also an analysis simulation tool. The software uses pre-defined part geometry to make an analysis based on an initial set of conditions and constraints and then removes all non-essential material and replaces it with generated lattice structure. Lattice structures can be applied to both volumes and/or surfaces and result in less overall component weight and less material consumption. This is particularly beneficial when producing metal AM parts and can result in considerably lower material costs and a significant reduction in production time.

These software tools offer viable solutions for greater freedom in design for extremely complex geometry and are a notable shift away from traditional CAD tools. However, I believe that further freedom in design will be achieved when Artificial Intelligence (AI) design tools emerge for the designer. In this way, the software will aid the designer in creating design solutions for parts with superior performance.

Generative Design

Chair designed in Autodesk Dreamcatcher

One of the most anticipated software releases this year is Autodesk Dreamcatcher. It has been described as a generative design system that allows designers to create design solutions through goals and constraints. This is the first generation of AI CAD software tools, that actually supports designers in the design process. The designer will determine a set of goals, constraints, and working parameters and the algorithms within the software will explore optimum design solutions. Essentially, this means that the actual modelling function will be performed by the software and not the designer. In this way, designers will be able to explore a number of solutions for a single problem in a shorter time frame to find the best possible outcome.

A Changing Design Landscape

Developing DfAM tools — and skills — takes time and resources, but only by investing in them will AM reach its potential. I believe that a new generation of software — in line with Dreamcatcher — will change the way we design things. We need more companies working on similar solutions to push AI in the 3D CAD design sphere. Today’s available solutions are focused on mechanical design and part performance. But we also need design tools for product and industrial design. Big data, AI design tools and customizable on-demand manufacturing will also likely dramatically change the consumer goods market. Today, the customer is a moving target, but in the future we will see customized products being designed based on data from particular customer groups.

Demand for DfAM is only set to increase. We need new tools to speed up the design process. But we also need more designers who can take 3D printing to the next level. Education is the key to training both current and future designers to work with design for additive manufacturing. It is only by combining designers’ creativity, new software with greater freedom that the AM industry will reach its potential.

This article originally appears on Disruptive Magazine.