1. Simple yet Effective Gradient-Free Graph Convolutional Networks(arXiv)

Author : Yulin Zhu, Xing Ai, Qimai Li, Xiao-Ming Wu, Kai Zhou

Abstract : Linearized Graph Neural Networks (GNNs) have attracted great attention in recent years for graph representation learning. Compared with nonlinear Graph Neural Network (GNN) models, linearized GNNs are much more time-efficient and can achieve comparable performances on typical downstream tasks such as node classification. Although some linearized GNN variants are purposely crafted to mitigate ``over-smoothing”, empirical studies demonstrate that they still somehow suffer from this issue. In this paper, we instead relate over-smoothing with the vanishing gradient phenomenon and craft a gradient-free training framework to achieve more efficient and effective linearized GNNs which can significantly overcome over-smoothing and enhance the generalization of the model. The experimental results demonstrate that our methods achieve better and more stable performances on node classification tasks with varying depths and cost much less training time.

2. Limitless stability for Graph Convolutional Networks(arXiv)

Author : Limitless stability for Graph Convolutional Networks

Abstract : This work establishes rigorous, novel and widely applicable stability guarantees and transferability bounds for graph convolutional networks — without reference to any underlying limit object or statistical distribution. Crucially, utilized graph-shift operators (GSOs) are not necessarily assumed to be normal, allowing for the treatment of networks on both directed- and for the first time also undirected graphs. Stability to node-level perturbations is related to an ‘adequate (spectral) covering’ property of the filters in each layer. Stability to edge-level perturbations is related to Lipschitz constants and newly introduced semi-norms of filters. Results on stability to topological perturbations are obtained through recently developed mathematical-physics based tools. As an important and novel example, it is showcased that graph convolutional networks are stable under graph-coarse-graining procedures (replacing strongly-connected sub-graphs by single nodes) precisely if the GSO is the graph Laplacian and filters are regular at infinity. These new theoretical results are supported by corresponding numerical investigations

--

--

Monodeep Mukherjee

Universe Enthusiast. Writes about Computer Science, AI, Physics, Neuroscience and Technology,Front End and Backend Development