How Reward Learning works part1(Machine Learning)

Monodeep Mukherjee
3 min readJan 16, 2023
Photo by Mia Golic on Unsplash
  1. Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble(arXiv)

Author : Fan-Ming Luo, Xingchen Cao, Yang Yu

Abstract : Inverse reinforcement learning (IRL) recovers the underlying reward function from expert demonstrations. A generalizable reward function is even desired as it captures the fundamental motivation of the expert. However, classical IRL methods can only recover reward functions coupled with the training dynamics, thus are hard to generalize to a changed environment. Previous dynamics-agnostic reward learning methods have strict assumptions, such as that the reward function has to be state-only. This work proposes a general approach to learn transferable reward functions, Dynamics-Agnostic Discriminator-Ensemble Reward Learning (DARL). Following the adversarial imitation learning (AIL) framework, DARL learns a dynamics-agnostic discriminator on a latent space mapped from the original state-action space. The latent space is learned to contain the least information of the dynamics. Moreover, to reduce the reliance of the discriminator on policies, the reward function is represented as an ensemble of the discriminators during training. We assess DARL in four MuJoCo tasks with dynamics transfer. Empirical results compared with the state-of-the-art AIL methods show that DARL can learn a reward that is more consistent with the true reward, thus obtaining higher environment returns.

2.Benchmarks and Algorithms for Offline Preference-Based Reward Learning (arXiv)

Author : Daniel Shin, Anca D. Dragan, Daniel S. Brown

Abstract : Learning a reward function from human preferences is challenging as it typically requires having a high-fidelity simulator or using expensive and potentially unsafe actual physical rollouts in the environment. However, in many tasks the agent might have access to offline data from related tasks in the same target environment. While offline data is increasingly being used to aid policy optimization via offline RL, our observation is that it can be a surprisingly rich source of information for preference learning as well. We propose an approach that uses an offline dataset to craft preference queries via pool-based active learning, learns a distribution over reward functions, and optimizes a corresponding policy via offline RL. Crucially, our proposed approach does not require actual physical rollouts or an accurate simulator for either the reward learning or policy optimization steps. To test our approach, we first evaluate existing offline RL benchmarks for their suitability for offline reward learning. Surprisingly, for many offline RL domains, we find that simply using a trivial reward function results good policy performance, making these domains ill-suited for evaluating learned rewards. To address this, we identify a subset of existing offline RL benchmarks that are well suited for offline reward learning and also propose new offline apprenticeship learning benchmarks which allow for more open-ended behaviors. When evaluated on this curated set of domains, our empirical results suggest that combining offline RL with learned human preferences can enable an agent to learn to perform novel tasks that were not explicitly shown in the offline data

--

--

Monodeep Mukherjee

Universe Enthusiast. Writes about Computer Science, AI, Physics, Neuroscience and Technology,Front End and Backend Development