Recent Research on Naive Bayes method part1(Machine Learning 2024)

Monodeep Mukherjee
2 min readApr 22, 2024
  1. Naive Bayes-based Context Extension for Large Language Models(arXiv)

Author : : Jianlin Su, Murtadha Ahmed, Wenbo, Luo Ao, Mingren Zhu, Yunfeng Liu

Abstract : Large Language Models (LLMs) have shown promising in-context learning abilities. However, conventional In-Context Learning (ICL) approaches are often impeded by length limitations of transformer architecture, which pose challenges when attempting to effectively integrate supervision from a substantial number of demonstration examples. In this paper, we introduce a novel framework, called Naive Bayes-based Context Extension (NBCE), to enable existing LLMs to perform ICL with an increased number of demonstrations by significantly expanding their context size. Importantly, this expansion does not require fine-tuning or dependence on particular model architectures, all the while preserving linear efficiency. NBCE initially splits the context into equal-sized windows fitting the target LLM’s maximum length. Then, it introduces a voting mechanism to select the most relevant window, regarded as the posterior context. Finally, it employs Bayes’ theorem to generate the test task. Our experimental results demonstrate that NBCE substantially enhances performance, particularly as the number of demonstration examples increases, consistently outperforming alternative methods. The NBCE code will be made publicly accessible. The code NBCE is available at: https://github.com/amurtadha/NBCE-master

2. Sampling Audit Evidence Using a Naive Bayes Classifier(arXiv)

Author : Guang-Yih Sheu, Nai-Ru Liu

Abstract : Taiwan’s auditors have suffered from processing excessive audit data, including drawing audit evidence. This study advances sampling techniques by integrating machine learning with sampling. This machine learning integration helps avoid sampling bias, keep randomness and variability, and target risker samples. We first classify data using a Naive Bayes classifier into some classes. Next, a user-based, item-based, or hybrid approach is employed to draw audit evidence. The representativeness index is the primary metric for measuring its representativeness. The user-based approach samples data symmetric around the median of a class as audit evidence. It may be equivalent to a combination of monetary and variable samplings. The item-based approach represents asymmetric sampling based on posterior probabilities for obtaining risky samples as audit evidence. It may be identical to a combination of non-statistical and monetary samplings. Auditors can hybridize those user-based and item-based approaches to balance representativeness and riskiness in selecting audit evidence. Three experiments show that sampling using machine learning integration has the benefits of drawing unbiased samples, handling complex patterns, correlations, and unstructured data, and improving efficiency in sampling big data. However, the limitations are the classification accuracy output by machine learning algorithms and the range of prior probabilities.

--

--

Monodeep Mukherjee

Universe Enthusiast. Writes about Computer Science, AI, Physics, Neuroscience and Technology,Front End and Backend Development