Understanding the Bird’s-eye-view concept part4(Computer Vision)
--
- Fast-BEV: A Fast and Strong Bird’s-Eye View Perception Baseline(arXiv)
Author : Yangguang Li, Bin Huang, Zeren Chen, Yufeng Cui, Feng Liang, Mingzhu Shen, Fenggang Liu, Enze Xie, Lu Sheng, Wanli Ouyang, Jing Shao
Abstract : Recently, perception task based on Bird’s-Eye View (BEV) representation has drawn more and more attention, and BEV representation is promising as the foundation for next-generation Autonomous Vehicle (AV) perception. However, most existing BEV solutions either require considerable resources to execute on-vehicle inference or suffer from modest performance. This paper proposes a simple yet effective framework, termed Fast-BEV , which is capable of performing faster BEV perception on the on-vehicle chips. Towards this goal, we first empirically find that the BEV representation can be sufficiently powerful without expensive transformer based transformation nor depth representation. Our Fast-BEV consists of five parts, We novelly propose (1) a lightweight deployment-friendly view transformation which fast transfers 2D image feature to 3D voxel space, (2) an multi-scale image encoder which leverages multi-scale information for better performance, (3) an efficient BEV encoder which is particularly designed to speed up on-vehicle inference. We further introduce (4) a strong data augmentation strategy for both image and BEV space to avoid over-fitting, (5) a multi-frame feature fusion mechanism to leverage the temporal information. Through experiments, on 2080Ti platform, our R50 model can run 52.6 FPS with 47.3% NDS on the nuScenes validation set, exceeding the 41.3 FPS and 47.5% NDS of the BEVDepth-R50 model and 30.2 FPS and 45.7% NDS of the BEVDet4D-R50 model. Our largest model (R101@900x1600) establishes a competitive 53.5% NDS on the nuScenes validation set. We further develop a benchmark with considerable accuracy and efficiency on current popular on-vehicle chips. The code is released at: https://github.com/Sense-GVT/Fast-BEV
2.BEV-MAE: Bird’s Eye View Masked Autoencoders for Outdoor Point Cloud Pre-training (arXiv)
Author : Zhiwei Lin, Yongtao Wang
Abstract : Current outdoor LiDAR-based 3D object detection methods mainly adopt the training-from-scratch paradigm. Unfortunately, this paradigm heavily relies on large-scale labeled data, whose collection can be expensive and time-consuming. Self-supervised pre-training is an effective and desirable way to alleviate this dependence on extensive annotated data. Recently, masked modeling has become a successful self-supervised learning approach for point clouds. However, current works mainly focus on synthetic or indoor datasets. When applied to large-scale and sparse outdoor point clouds, they fail to yield satisfactory results. In this work, we present BEV-MAE, a simple masked autoencoder pre-training framework for 3D object detection on outdoor point clouds. Specifically, we first propose a bird’s eye view (BEV) guided masking strategy to guide the 3D encoder learning feature representation in a BEV perspective and avoid complex decoder design during pre-training. Besides, we introduce a learnable point token to maintain a consistent receptive field size of the 3D encoder with fine-tuning for masked point cloud inputs. Finally, based on the property of outdoor point clouds, i.e., the point clouds of distant objects are more sparse, we propose point density prediction to enable the 3D encoder to learn location information, which is essential for object detection. Experimental results show that BEV-MAE achieves new state-of-the-art self-supervised results on both Waymo and nuScenes with diverse 3D object detectors. Furthermore, with only 20% data and 7% training cost during pre-training, BEV-MAE achieves comparable performance with the state-of-the-art method ProposalContrast. The source code and pre-trained models will be made publicly available