Working with Latent Semantic Analysis part2(Machine Learning)

Monodeep Mukherjee
2 min readMar 4, 2023
  1. Text Mining using Nonnegative Matrix Factorization and Latent Semantic Analysis(arXiv)

Author : : Ali Hassani, Amir Iranmanesh, Najme Mansouri

Abstract : Text clustering is arguably one of the most important topics in modern data mining. Nevertheless, text data require tokenization which usually yields a very large and highly sparse term-document matrix, which is usually difficult to process using conventional machine learning algorithms. Methods such as Latent Semantic Analysis have helped mitigate this issue, but are nevertheless not completely stable in practice. As a result, we propose a new feature agglomeration method based on Nonnegative Matrix Factorization, which is employed to separate the terms into groups, and then each group’s term vectors are agglomerated into a new feature vector. Together, these feature vectors create a new feature space much more suitable for clustering. In addition, we propose a new deterministic initialization for spherical K-Means, which proves very useful for this specific type of data. In order to evaluate the proposed method, we compare it to some of the latest research done in this field, as well as some of the most practiced methods. In our experiments, we conclude that the proposed method either significantly improves clustering performance, or maintains the performance of other methods, while improving stability in results

2. Quantum Latent Semantic Analysis(arXiv)

Author : Fabio A. González, Juan C. Caicedo

Abstract : The main goal of this paper is to explore latent topic analysis (LTA), in the context of quantum information retrieval. LTA is a valuable technique for document analysis and representation, which has been extensively used in information retrieval and machine learning. Different LTA techniques have been proposed, some based on geometrical modeling (such as latent semantic analysis, LSA) and others based on a strong statistical foundation. However, these two different approaches are not usually mixed. Quantum information retrieval has the remarkable virtue of combining both geometry and probability in a common principled framework. We built on this quantum framework to propose a new LTA method, which has a clear geometrical motivation but also supports a well-founded probabilistic interpretation. An initial exploratory experimentation was performed on three standard data sets. The results show that the proposed method outperforms LSA on two of the three datasets. These results suggests that the quantum-motivated representation is an alternative for geometrical latent topic modeling worthy of further exploratio

--

--

Monodeep Mukherjee

Universe Enthusiast. Writes about Computer Science, AI, Physics, Neuroscience and Technology,Front End and Backend Development