Algorithmic Challenges with Solutions (Python & C++)
These are the solutions to the Algorithmic Coding Challenges from THIS ARTICLE.
To find solutions to other coding challenges follow the links below:
Beginner Challenges
Advanced Challenges
Intermediate Challenges
Coding Challenges with Data Structures
Challenge 40:
Merge Intervals: Merge overlapping intervals.
- Input: [[1, 3], [2, 6], [8, 10], [15, 18]]
- Output: [[1, 6], [8, 10], [15, 18]]
To solve the problem of merging overlapping intervals, follow these steps:
- Sort the Intervals: Start by sorting the intervals based on their starting points. This helps in processing the intervals sequentially.
- Merge Overlapping Intervals: Traverse through the sorted intervals and merge them if they overlap. If an interval does not overlap with the previous one, add the previous interval to the result and update the current interval.
Solution (Python):
def merge_intervals(intervals):
if not intervals:
return []
# Sort intervals based on the starting point
intervals.sort(key=lambda x: x[0])
merged = [intervals[0]] # Start with the first interval
for current in intervals[1:]:
last_merged = merged[-1]
# If the current interval overlaps with the last merged interval, merge them
if current[0] <= last_merged[1]:
last_merged[1] = max(last_merged[1], current[1])
else:
# Otherwise, add the current interval as a new merged interval
merged.append(current)
return merged
# Example usage
intervals = [[1, 3], [2, 6], [8, 10], [15, 18]]
print(merge_intervals(intervals)) # Output: [[1, 6], [8, 10], [15, 18]]
Solution (C++):
#include <iostream> // for input and output
#include <vector> // for std::vector
#include <algorithm> // for std::sort
// Function to merge overlapping intervals
std::vector<std::vector<int>> mergeIntervals(std::vector<std::vector<int>>& intervals) {
if (intervals.empty()) return {};
// Sort intervals based on the starting point
std::sort(intervals.begin(), intervals.end(),
[](const std::vector<int>& a, const std::vector<int>& b) {
return a[0] < b[0];
});
std::vector<std::vector<int>> merged;
merged.push_back(intervals[0]);
for (const auto& current : intervals) {
auto& lastMerged = merged.back();
// If the current interval overlaps with the last merged interval, merge them
if (current[0] <= lastMerged[1]) {
lastMerged[1] = std::max(lastMerged[1], current[1]);
} else {
// Otherwise, add the current interval as a new merged interval
merged.push_back(current);
}
}
return merged;
}
// Example usage
int main() {
std::vector<std::vector<int>> intervals = {{1, 3}, {2, 6}, {8, 10}, {15, 18}};
auto result = mergeIntervals(intervals);
// Print the result
for (const auto& interval : result) {
std::cout << "[" << interval[0] << ", " << interval[1] << "] ";
}
std::cout << std::endl; // Output: [1, 6] [8, 10] [15, 18]
return 0; // Return 0 to indicate successful completion
}
Challenge 41:
Search in Rotated Sorted Array: Search for an element in a rotated sorted array.
- Input: [4, 5, 6, 7, 0, 1, 2], Target: 0
- Output: Index: 4
To search for an element in a rotated sorted array, you can use a modified binary search algorithm. The key idea is to determine which side of the rotated array is sorted and then apply binary search on that sorted side.
Approach
- Identify Sorted Side: During each iteration, determine if the left half or the right half of the array is sorted.
- Search in Sorted Side: Depending on which side is sorted, check if the target is within the bounds of that sorted segment and adjust the search range accordingly.
- Adjust Search Range: Move the search to the unsorted side if the target is not in the sorted side.
Solution (Python):
def search_in_rotated_sorted_array(nums, target):
left, right = 0, len(nums) - 1
while left <= right:
mid = (left + right) // 2
if nums[mid] == target:
return mid
# Determine which side is sorted
if nums[left] <= nums[mid]: # Left side is sorted
if nums[left] <= target < nums[mid]: # Target is in the sorted side
right = mid - 1
else:
left = mid + 1
else: # Right side is sorted
if nums[mid] < target <= nums[right]: # Target is in the sorted side
left = mid + 1
else:
right = mid - 1
return -1 # Target not found
# Example usage
nums = [4, 5, 6, 7, 0, 1, 2]
target = 0
print(search_in_rotated_sorted_array(nums, target)) # Output: 4
Solution (C++):
#include <iostream> // for input and output
#include <vector> // for std::vector
int searchInRotatedSortedArray(const std::vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
}
// Determine which side is sorted
if (nums[left] <= nums[mid]) { // Left side is sorted
if (nums[left] <= target && target < nums[mid]) { // Target is in the sorted side
right = mid - 1;
} else {
left = mid + 1;
}
} else { // Right side is sorted
if (nums[mid] < target && target <= nums[right]) { // Target is in the sorted side
left = mid + 1;
} else {
right = mid - 1;
}
}
}
return -1; // Target not found
}
// Example usage
int main() {
std::vector<int> nums = {4, 5, 6, 7, 0, 1, 2};
int target = 0;
int index = searchInRotatedSortedArray(nums, target);
std::cout << "Index: " << index << std::endl; // Output: Index: 4
return 0; // Return 0 to indicate successful completion
}
Challenge 42:
Count Inversions in Array: Count the number of inversions needed to sort the array.
- Input: [8, 4, 2, 1]
- Output: 6
To count the number of inversions needed to sort an array, you can use a modified merge sort algorithm. An inversion is defined as a pair of indices (i,j) such that i<j and array[i]>array[j].
Here’s a step-by-step explanation of how to count inversions using merge sort:
- Divide the Array: Divide the array into two halves recursively until each subarray contains a single element.
- Merge and Count: While merging two sorted halves, count the inversions. An inversion occurs when an element from the right half of the array is less than an element from the left half.
- Combine Counts: The total number of inversions is the sum of inversions found in the left half, right half, and during the merge step.
Solution (Python):
def count_inversions(arr):
def merge_and_count(arr, temp_arr, left, mid, right):
i = left # Starting index for left subarray
j = mid + 1 # Starting index for right subarray
k = left # Starting index to be sorted
inv_count = 0
# Conditions are checked to ensure that i doesn't exceed mid and j doesn't exceed right
while i <= mid and j <= right:
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
i += 1
else:
temp_arr[k] = arr[j]
inv_count += (mid-i + 1)
j += 1
k += 1
# Copy the remaining elements of left subarray, if any
while i <= mid:
temp_arr[k] = arr[i]
i += 1
k += 1
# Copy the remaining elements of right subarray, if any
while j <= right:
temp_arr[k] = arr[j]
j += 1
k += 1
# Copy the sorted subarray into Original array
for i in range(left, right + 1):
arr[i] = temp_arr[i]
return inv_count
def merge_sort_and_count(arr, temp_arr, left, right):
inv_count = 0
if left < right:
mid = (left + right)//2
inv_count += merge_sort_and_count(arr, temp_arr, left, mid)
inv_count += merge_sort_and_count(arr, temp_arr, mid + 1, right)
inv_count += merge_and_count(arr, temp_arr, left, mid, right)
return inv_count
temp_arr = [0]*len(arr)
return merge_sort_and_count(arr, temp_arr, 0, len(arr) - 1)
# Example usage
arr = [8, 4, 2, 1]
print(count_inversions(arr)) # Output: 6
Solution (C++):
#include <iostream> // for input and output
#include <vector> // for std::vector
int mergeAndCount(std::vector<int>& arr, std::vector<int>& temp_arr, int left, int mid, int right) {
int i = left; // Starting index for left subarray
int j = mid + 1; // Starting index for right subarray
int k = left; // Starting index to be sorted
int inv_count = 0;
// Conditions are checked to ensure that i doesn't exceed mid and j doesn't exceed right
while (i <= mid && j <= right) {
if (arr[i] <= arr[j]) {
temp_arr[k++] = arr[i++];
} else {
temp_arr[k++] = arr[j++];
inv_count += (mid - i + 1);
}
}
// Copy the remaining elements of left subarray, if any
while (i <= mid) {
temp_arr[k++] = arr[i++];
}
// Copy the remaining elements of right subarray, if any
while (j <= right) {
temp_arr[k++] = arr[j++];
}
// Copy the sorted subarray into Original array
for (i = left; i <= right; i++) {
arr[i] = temp_arr[i];
}
return inv_count;
}
int mergeSortAndCount(std::vector<int>& arr, std::vector<int>& temp_arr, int left, int right) {
int inv_count = 0;
if (left < right) {
int mid = (left + right) / 2;
inv_count += mergeSortAndCount(arr, temp_arr, left, mid);
inv_count += mergeSortAndCount(arr, temp_arr, mid + 1, right);
inv_count += mergeAndCount(arr, temp_arr, left, mid, right);
}
return inv_count;
}
int countInversions(std::vector<int>& arr) {
std::vector<int> temp_arr(arr.size());
return mergeSortAndCount(arr, temp_arr, 0, arr.size() - 1);
}
// Example usage
int main() {
std::vector<int> arr = {8, 4, 2, 1};
std::cout << countInversions(arr) << std::endl; // Output: 6
return 0; // Return 0 to indicate successful completion
}
Challenge 43:
Find the Missing Number: Find the missing number in a given array of integers.
- Input: [3, 0, 1]
- Output: 2
To find the missing number in an array of integers ranging from 0 to n, where n is the length of the array plus one, you can use a mathematical approach based on the sum of integers.
Approach
1 ) Calculate the Expected Sum: The sum of the first n natural numbers can be calculated using the formula:
SumExpected = n × (n+1) / 2
where n is the length of the array.
2 ) Calculate the Actual Sum: Sum the elements of the given array.
3 ) Find the Missing Number: The missing number can be found by subtracting the actual sum from the expected sum:
Missing Number = SumExpected − SumActual
Solution (Python):
def find_missing_number(arr):
n = len(arr)
expected_sum = (n * (n + 1)) // 2
actual_sum = sum(arr)
return expected_sum - actual_sum
# Example usage
arr = [3, 0, 1]
print(find_missing_number(arr)) # Output: 2
Solution (C++):
#include <iostream> // for input and output
#include <vector> // for std::vector
int findMissingNumber(const std::vector<int>& arr) {
int n = arr.size();
int expected_sum = (n * (n + 1)) / 2;
int actual_sum = 0;
for (int num : arr) {
actual_sum += num;
}
return expected_sum - actual_sum;
}
// Example usage
int main() {
std::vector<int> arr = {3, 0, 1};
std::cout << findMissingNumber(arr) << std::endl; // Output: 2
return 0; // Return 0 to indicate successful completion
}
Challenge 44:
Longest Increasing Subsequence: Find the length of the longest increasing subsequence.
- Input: [10, 9, 2, 5, 3, 7, 101, 18]
- Output: 4
To find the length of the longest increasing subsequence (LIS) in an array, you can use a dynamic programming approach. The goal is to determine the length of the longest subsequence where each element is greater than the previous one.
Solution (Python):
def length_of_lis(nums):
if not nums:
return 0
n = len(nums)
dp = [1] * n
for i in range(1, n):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
# Example usage
nums = [10, 9, 2, 5, 3, 7, 101, 18]
print(length_of_lis(nums)) # Output: 4
Solution (C++):
#include <iostream> // for input and output
#include <vector> // for std::vector
#include <algorithm> // for std::max
int lengthOfLIS(const std::vector<int>& nums) {
if (nums.empty()) return 0;
int n = nums.size();
std::vector<int> dp(n, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j]) {
dp[i] = std::max(dp[i], dp[j] + 1);
}
}
}
return *std::max_element(dp.begin(), dp.end());
}
// Example usage
int main() {
std::vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};
std::cout << lengthOfLIS(nums) << std::endl; // Output: 4
return 0; // Return 0 to indicate successful completion
}
Challenge 45:
Minimum Window Substring: Find the smallest substring containing all characters of another string.
- Input: S: “ADOBECODEBANC”, T: “ABC”
- Output: “BANC”
To find the smallest substring in S that contains all characters of T, you can use the sliding window technique combined with a hash map to track the characters and their counts. Here's a step-by-step approach:
Approach
- Frequency Count: Use two hash maps to keep track of the frequency of characters in T and the current window in S.
- Sliding Window: Expand the window by moving the right pointer and contract it by moving the left pointer to find the smallest valid window.
- Validation: Check if the current window contains all characters of T by comparing the frequency counts.
Steps
1 ) Initialize Data Structures:
- A hash map for the frequency of characters in T (target_count).
- A hash map for the frequency of characters in the current window (window_count).
- Two pointers (left and right) to represent the sliding window.
- Variables to track the minimum length and the start index of the minimum window.
2 ) Expand the Window: Move the right pointer to include more characters and update the window_count.
3 ) Contract the Window: Move the left pointer to try to find the smallest window that still contains all characters of T.
4 ) Update Minimum Length: Whenever a valid window is found (contains all characters of T), update the minimum length and start index.
Solution (Python):
from collections import Counter, defaultdict
def min_window_substring(S, T):
if not S or not T:
return ""
target_count = Counter(T)
window_count = defaultdict(int)
required = len(target_count)
formed = 0
l, r = 0, 0
min_len = float('inf')
min_window = ""
while r < len(S):
char = S[r]
window_count[char] += 1
if char in target_count and window_count[char] == target_count[char]:
formed += 1
while l <= r and formed == required:
char = S[l]
if r - l + 1 < min_len:
min_len = r - l + 1
min_window = S[l:r+1]
window_count[char] -= 1
if char in target_count and window_count[char] < target_count[char]:
formed -= 1
l += 1
r += 1
return min_window
# Example usage
S = "ADOBECODEBANC"
T = "ABC"
print(min_window_substring(S, T)) # Output: "BANC"
Solution (C++):
#include <iostream> // for input and output
#include <unordered_map> // for std::unordered_map
#include <climits> // for INT_MAX
std::string minWindowSubstring(const std::string& S, const std::string& T) {
if (S.empty() || T.empty()) return "";
std::unordered_map<char, int> target_count;
std::unordered_map<char, int> window_count;
for (char c : T) {
target_count[c]++;
}
int required = target_count.size();
int formed = 0;
int l = 0, r = 0;
int min_len = INT_MAX;
std::string min_window;
while (r < S.size()) {
char c = S[r];
window_count[c]++;
if (target_count.find(c) != target_count.end() && window_count[c] == target_count[c]) {
formed++;
}
while (l <= r && formed == required) {
c = S[l];
if (r - l + 1 < min_len) {
min_len = r - l + 1;
min_window = S.substr(l, min_len);
}
window_count[c]--;
if (target_count.find(c) != target_count.end() && window_count[c] < target_count[c]) {
formed--;
}
l++;
}
r++;
}
return min_window;
}
// Example usage
int main() {
std::string S = "ADOBECODEBANC";
std::string T = "ABC";
std::cout << minWindowSubstring(S, T) << std::endl; // Output: "BANC"
return 0; // Return 0 to indicate successful completion
}
Challenge 46:
Graph Coloring Problem: Determine if a graph can be colored with at most M colors.
- Input: Graph: {0: [1, 2], 1: [0, 2], 2: [0, 1]}, M: 2
- Output: True
To determine if a graph can be colored with at most M
colors such that no two adjacent vertices share the same color, you can use a backtracking approach. The idea is to attempt to assign colors to each vertex while ensuring that no two adjacent vertices share the same color.
Approach
- Graph Representation: Use an adjacency list to represent the graph.
- Backtracking Function: Attempt to color each vertex with one of the
M
colors and recursively check if the graph can be colored with the remaining vertices. - Validation: For each color assignment, ensure that no two adjacent vertices have the same color.
Steps
1 ) Create a Color Array: An array colors where colors [i] represents the color assigned to vertex i. Initialize it to -1, indicating that no color is assigned.
2 ) Backtracking Function:
- Try to assign a color to the current vertex.
- Recursively attempt to color the rest of the graph.
- If a valid coloring is found, return True. Otherwise, backtrack and try the next color.
3 ) Start Coloring: Begin coloring from the first vertex and use the backtracking function to check if the entire graph can be colored with the given number of colors.
Solution (Python):
def is_valid(graph, colors, vertex, color):
for neighbor in graph[vertex]:
if colors[neighbor] == color:
return False
return True
def graph_coloring_util(graph, colors, vertex, M):
if vertex == len(graph):
return True
for color in range(1, M + 1):
if is_valid(graph, colors, vertex, color):
colors[vertex] = color
if graph_coloring_util(graph, colors, vertex + 1, M):
return True
colors[vertex] = -1 # Backtrack
return False
def graph_coloring(graph, M):
colors = [-1] * len(graph)
return graph_coloring_util(graph, colors, 0, M)
# Example usage
graph = {0: [1, 2], 1: [0, 2], 2: [0, 1]}
M = 2
print(graph_coloring(graph, M)) # Output: True
Solution (C++):
#include <iostream> // for input and output
#include <vector> // for std::vector
#include <unordered_map> // for std::unordered_map
bool isValid(const std::unordered_map<int, std::vector<int>>& graph, const std::vector<int>& colors, int vertex, int color) {
for (int neighbor : graph.at(vertex)) {
if (colors[neighbor] == color) {
return false;
}
}
return true;
}
bool graphColoringUtil(const std::unordered_map<int, std::vector<int>>& graph, std::vector<int>& colors, int vertex, int M) {
if (vertex == graph.size()) {
return true;
}
for (int color = 1; color <= M; ++color) {
if (isValid(graph, colors, vertex, color)) {
colors[vertex] = color;
if (graphColoringUtil(graph, colors, vertex + 1, M)) {
return true;
}
colors[vertex] = -1; // Backtrack
}
}
return false;
}
bool graphColoring(const std::unordered_map<int, std::vector<int>>& graph, int M) {
std::vector<int> colors(graph.size(), -1);
return graphColoringUtil(graph, colors, 0, M);
}
// Example usage
int main() {
std::unordered_map<int, std::vector<int>> graph = {
{0, {1, 2}},
{1, {0, 2}},
{2, {0, 1}}
};
int M = 2;
std::cout << (graphColoring(graph, M) ? "True" : "False") << std::endl; // Output: True
return 0; // Return 0 to indicate successful completion
}
Challenge 47:
Topological Sort: Perform a topological sort on a directed acyclic graph.
- Input: Graph: {5: [2, 0], 4: [0, 1], 2: [3], 3: [1]}
- Output: [4, 5, 2, 3, 1, 0]
To perform a topological sort on a Directed Acyclic Graph (DAG), you can use Kahn’s Algorithm or Depth-First Search (DFS). Both methods are efficient for this task.
Kahn’s Algorithm
Kahn’s Algorithm uses in-degrees of nodes to find the topological order. Here’s a brief overview:
- Compute In-Degrees: Calculate the in-degree (number of incoming edges) for each node.
- Initialize Queue: Enqueue all nodes with an in-degree of 0.
- Process Nodes: Dequeue a node, append it to the result list, and decrease the in-degree of its neighbors. If a neighbor’s in-degree becomes 0, enqueue it.
- Finish: Continue until the queue is empty.
Depth-First Search (DFS) Based Approach
The DFS-based approach involves recursively visiting nodes and using a stack to keep track of the topological order. Here’s how it works:
- Visit Nodes: Perform a DFS on each unvisited node.
- Track Finished Nodes: After visiting all descendants of a node, push it to a stack.
- Generate Order: The topological sort is obtained by popping nodes from the stack.
Python Solution Using Kahn’s Algorithm
from collections import deque, defaultdict
def topological_sort_kahn(graph):
# Step 1: Calculate in-degrees
in_degree = {node: 0 for node in graph}
for node in graph:
for neighbor in graph[node]:
in_degree[neighbor] += 1
# Step 2: Initialize the queue with nodes having 0 in-degree
queue = deque([node for node in in_degree if in_degree[node] == 0])
topological_order = []
# Step 3: Process nodes in the queue
while queue:
node = queue.popleft()
topological_order.append(node)
for neighbor in graph[node]:
in_degree[neighbor] -= 1
if in_degree[neighbor] == 0:
queue.append(neighbor)
# Check if topological_order contains all nodes
if len(topological_order) == len(graph):
return topological_order
else:
return [] # Graph has a cycle or is not a DAG
# Example usage
graph = {5: [2, 0], 4: [0, 1], 2: [3], 3: [1]}
print(topological_sort_kahn(graph)) # Output: [4, 5, 2, 3, 1, 0]
Python Solution Using DFS
def topological_sort_dfs(graph):
def dfs(node):
visited.add(node)
for neighbor in graph[node]:
if neighbor not in visited:
dfs(neighbor)
topological_order.append(node)
visited = set()
topological_order = []
# Visit all nodes
for node in graph:
if node not in visited:
dfs(node)
return topological_order[::-1] # Reverse to get the correct order
# Example usage
graph = {5: [2, 0], 4: [0, 1], 2: [3], 3: [1]}
print(topological_sort_dfs(graph)) # Output: [4, 5, 2, 3, 1, 0]
C++ Solution Using Kahn’s Algorithm
#include <iostream>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <queue>
std::vector<int> topologicalSortKahn(const std::unordered_map<int, std::vector<int>>& graph) {
std::unordered_map<int, int> inDegree;
for (const auto& pair : graph) {
inDegree[pair.first] = 0;
}
for (const auto& pair : graph) {
for (int neighbor : pair.second) {
inDegree[neighbor]++;
}
}
std::queue<int> queue;
for (const auto& pair : inDegree) {
if (pair.second == 0) {
queue.push(pair.first);
}
}
std::vector<int> topologicalOrder;
while (!queue.empty()) {
int node = queue.front();
queue.pop();
topologicalOrder.push_back(node);
for (int neighbor : graph.at(node)) {
inDegree[neighbor]--;
if (inDegree[neighbor] == 0) {
queue.push(neighbor);
}
}
}
return topologicalOrder;
}
// Example usage
int main() {
std::unordered_map<int, std::vector<int>> graph = {
{5, {2, 0}},
{4, {0, 1}},
{2, {3}},
{3, {1}}
};
std::vector<int> result = topologicalSortKahn(graph);
for (int node : result) {
std::cout << node << " ";
}
std::cout << std::endl; // Output: 4 5 2 3 1 0
return 0;
}
C++ Solution Using DFS
#include <iostream>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <stack>
void dfs(int node, const std::unordered_map<int, std::vector<int>>& graph, std::unordered_set<int>& visited, std::stack<int>& Stack) {
visited.insert(node);
for (int neighbor : graph.at(node)) {
if (visited.find(neighbor) == visited.end()) {
dfs(neighbor, graph, visited, Stack);
}
}
Stack.push(node);
}
std::vector<int> topologicalSortDFS(const std::unordered_map<int, std::vector<int>>& graph) {
std::unordered_set<int> visited;
std::stack<int> Stack;
for (const auto& pair : graph) {
if (visited.find(pair.first) == visited.end()) {
dfs(pair.first, graph, visited, Stack);
}
}
std::vector<int> topologicalOrder;
while (!Stack.empty()) {
topologicalOrder.push_back(Stack.top());
Stack.pop();
}
return topologicalOrder;
}
// Example usage
int main() {
std::unordered_map<int, std::vector<int>> graph = {
{5, {2, 0}},
{4, {0, 1}},
{2, {3}},
{3, {1}}
};
std::vector<int> result = topologicalSortDFS(graph);
for (int node : result) {
std::cout << node << " ";
}
std::cout << std::endl; // Output: 4 5 2 3 1 0
return 0;
}
Challenge 48:
Matrix Chain Multiplication: Find the optimal way to multiply a chain of matrices.
- Input: Dimensions: [10, 20, 30, 40, 30]
- Output: Minimum number of multiplications: 30000
Matrix Chain Multiplication is a classic problem in dynamic programming. The goal is to find the optimal order of matrix multiplications that minimizes the total number of scalar multiplications.
Problem Explanation
Given a sequence of matrices, the problem is to find the minimum number of scalar multiplications needed to compute the product of the matrices. The dimensions of the matrices are given in an array, where the i-th matrix has dimensions dimensions[i-1] x dimensions[i].
Dynamic Programming Approach
1 ) Define the Problem:
- Let m[i][j] be the minimum number of multiplications needed to compute the product of matrices from index i to j.
2 ) Recursive Formula:
- To compute m[i][j], consider the product split at every possible position k between i and j:
m[i][j] = min/i≤k<j (m[i][k] + m[k+1][j] + dimensions[i−1] × dimensions[k] × dimensions[j])
- This formula considers the cost of multiplying the matrices from i to k, then from k + 1 to j, plus the cost of multiplying the resulting two matrices.
3 ) Initialization:
- m[i][i] = 0 for all i since a single matrix does not need any multiplication.
4 ) Implementation Steps:
- Initialize a 2D array m for storing the minimum costs.
- Use nested loops to fill in the m array based on the recursive formula.
Solution (Python):
def matrix_chain_multiplication(dimensions):
n = len(dimensions) - 1
# m[i][j] will be the minimum number of multiplications needed to compute the product of matrices from i to j
m = [[0] * n for _ in range(n)]
# l is the chain length
for l in range(2, n+1): # l ranges from 2 to n
for i in range(n - l + 1):
j = i + l - 1
m[i][j] = float('inf')
for k in range(i, j):
q = m[i][k] + m[k+1][j] + dimensions[i] * dimensions[k+1] * dimensions[j+1]
if q < m[i][j]:
m[i][j] = q
return m[0][n-1]
# Example usage
dimensions = [10, 20, 30, 40, 30]
print("Minimum number of multiplications:", matrix_chain_multiplication(dimensions)) # Output: 30000
Solution (C++):
#include <iostream>
#include <vector>
#include <climits>
int matrixChainMultiplication(const std::vector<int>& dimensions) {
int n = dimensions.size() - 1;
std::vector<std::vector<int>> m(n, std::vector<int>(n, 0));
// l is the chain length
for (int l = 2; l <= n; ++l) { // l ranges from 2 to n
for (int i = 0; i < n - l + 1; ++i) {
int j = i + l - 1;
m[i][j] = INT_MAX;
for (int k = i; k < j; ++k) {
int q = m[i][k] + m[k+1][j] + dimensions[i] * dimensions[k+1] * dimensions[j+1];
if (q < m[i][j]) {
m[i][j] = q;
}
}
}
}
return m[0][n-1];
}
// Example usage
int main() {
std::vector<int> dimensions = {10, 20, 30, 40, 30};
std::cout << "Minimum number of multiplications: " << matrixChainMultiplication(dimensions) << std::endl; // Output: 30000
return 0;
}
Challenge 49:
Travelling Salesman Problem: Solve the travelling salesman problem using dynamic programming.
- Input: Distance matrix: [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]]
- Output: Minimum cost: 80
The Travelling Salesman Problem (TSP) is a classic problem in optimization and computer science where the goal is to find the shortest possible route that visits a set of cities exactly once and returns to the origin city.
Dynamic Programming Approach for TSP
To solve the TSP using dynamic programming, we use a technique known as the Held-Karp algorithm. This approach has a time complexity of 𝑂 ⋅
(𝑛^2 ⋅ 2^𝑛) , which is more efficient than the brute-force method but still exponential.
Problem Explanation
1 ) State Representation:
- Define a 2D array dp[mask][i] where mask is a bitmask representing the set of visited cities, and i is the last visited city. dp[mask][i] represents the minimum cost to visit all cities in the subset represented by mask, ending at city i.
2 ) Base Case:
- Initialize the cost of starting from the first city and visiting only that city as zero: dp[1][0] = 0.
3 ) Recursive Case:
- For each subset of cities (represented by mask), and each possible ending city i, update the cost for visiting a new city j using: dp[mask∪{j}][j] = min(dp[mask∪{j}][j], dp[mask][i] + distance[i][j])
- This formula accounts for the cost of reaching city j from city i, having already visited all cities in the subset mask.
4 ) Result Extraction:
- The final result will be the minimum cost to complete the tour starting and ending at city 0:
min(dp[(1<<n) − 1][i] + distance[i][0])
- Here, (1 << n) — 1 represents the bitmask where all cities are visited.
Solution (Python):
def tsp(distance):
n = len(distance)
# Initialize the dp array with infinity
dp = [[float('inf')] * n for _ in range(1 << n)]
dp[1][0] = 0 # Start at city 0
for mask in range(1 << n):
for i in range(n):
if mask & (1 << i):
for j in range(n):
if mask & (1 << j) == 0:
new_mask = mask | (1 << j)
dp[new_mask][j] = min(dp[new_mask][j], dp[mask][i] + distance[i][j])
# Compute the minimum cost to return to the starting city (0)
result = min(dp[(1 << n) - 1][i] + distance[i][0] for i in range(1, n))
return result
# Example usage
distance_matrix = [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]]
print("Minimum cost:", tsp(distance_matrix)) # Output: 80
Solution (C++):
#include <iostream>
#include <vector>
#include <climits>
int tsp(const std::vector<std::vector<int>>& distance) {
int n = distance.size();
std::vector<std::vector<int>> dp(1 << n, std::vector<int>(n, INT_MAX));
dp[1][0] = 0; // Start at city 0
for (int mask = 1; mask < (1 << n); ++mask) {
for (int i = 0; i < n; ++i) {
if (mask & (1 << i)) {
for (int j = 0; j < n; ++j) {
if (!(mask & (1 << j))) {
int new_mask = mask | (1 << j);
dp[new_mask][j] = std::min(dp[new_mask][j], dp[mask][i] + distance[i][j]);
}
}
}
}
}
// Compute the minimum cost to return to the starting city (0)
int result = INT_MAX;
for (int i = 1; i < n; ++i) {
result = std::min(result, dp[(1 << n) - 1][i] + distance[i][0]);
}
return result;
}
int main() {
std::vector<std::vector<int>> distance_matrix = {{0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0}};
std::cout << "Minimum cost: " << tsp(distance_matrix) << std::endl; // Output: 80
return 0;
}
Hope you found these resources useful. Let me know if you have any questions, and feel free to share some feedback.
P.S. If you want to see more of this content, make sure to follow me and subscribe 🙌