Highlighted by Nick Frontino

See more

The final thing that you come to is blockchain, and the blockchain just comes along and says, “We’re going to get rid of the speed of light advantage by having a 10-minute block, or even a 15-second block, so the block is long enough that the speed-of-light delays don’t make much difference, and then we’re going to make it even more reliable and robust by randomly picking where in the world we’re going to use this as the centre of the world for the next transaction batch.” You randomly pick a new point in the world on every batch, all of the mining stuff is about making yourself eligible to be picked as a potential site to process the batch, you then process the batch any way you like, in the order that those messages came to you usually, then you put the thing out there and that’s the next block, and that’s your blockchain. But it’s worth understanding that this is not a trivial response to a bunch of lunatics who wanted to print their own money; it’s a fundamental approach to a hard problem in computer science that in one direction gave us HFT and in another direction gave us Google Spanner and in the third direction gives you blockchain. Anything that we do in the future is going to have to overcome these constraints, so you’re going to continue to see weird computing architectures that attempt to allow us to live in the illusion of a simultaneous now, even though the speed of light delay dominates everything to do with machines, so there is a deep thing there. If you want to understand this stuff, dig up a thing called the CAP theorem, it really runs through why this is the way it is. That’s a little bit on blockchain, and now we’re going to get into the trust stuff.