Image for post
Image for post

English scholar Thomas Malthus made his first predictions about population economics and resources in 1798. More than two centuries later, there have been many projections that the world population will eventually outstrip agricultural production.

The consequence? Mass starvation.

Mercifully, agricultural production has kept pace and mooted those predictions over the last 200 years. This is in part because vast stretches of wilderness have been converted to cropland. It’s also in part because breakthroughs in farm practices, agronomy and the technology of plant breeding have increased the amount of food an acre of land can produce.

But we can no longer count on new lands to feed the world. Our population continues to grow by 81 million a year. Total arable land has been flat for decades, and since 1961, the amount of arable land per person has been nearly cut in half. To feed the world, we must get more out of what we have left — or perhaps even less than that, with climate change and land degradation exacting a toll on the productivity of existing agricultural lands. …


Image for post
Image for post

A changing climate. Limited arable land. Increasing pest resistance: How speed can help us overcome current sustainability challenges in the new millennium.

For hundreds of years, North America’s farmers have felt they could safely assume that next year’s weather would be much like last year’s and every other year’s, with adjustments for predictable cycles. That’s no longer the case. True, there have always been extreme weather events such as droughts and floods, but for the most part, they were rare. …


Image for post
Image for post

A short guide to answering a complicated question.

While Covid-19 has commandeered the world’s attention, an important debate that will weigh on the future of agriculture is in process in Europe. European regulatory agencies are assessing what constitutes a genetically modified (GM) product. This debate started in the last century, and it has been characterized by confusion, inaccuracy and inconsistency. Here is my ‘cheat sheet’ for what does — and what does not — qualify an organism as GM based on scientific discourse.

Settling GM vs. Non-GM

Broadest Definition: ‘GM’ means any genetic change in an organism. This definition is useless. Every food we eat — organic or not — is the product of genetic change. Without genetic changes fostered 10–12 thousand years ago by indigenous peoples in Mexico, corn would still be a tall grass with tiny kernels encased in tooth-breaking hard shells. Traditional plant breeding attempts to alter genes, as do all other plant-breeding techniques. …

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store