Metcalfe’s Law states that a value of a network is proportional to the square of the number of its nodes. In an area where good soils, mines, and forests are randomly distributed, the number of nodes valuable to an industrial economy is proportional to the area encompassed. The number of such nodes that can be economically accessed is an inverse square of the cost per mile of transportation. Combine this with Metcalfe’s Law and we reach a dramatic but solid mathematical conclusion: the potential value of a land transportation network is the inverse fourth power of the cost of that transportation. A reduction in transportation costs in a trade network by a factor of two increases the potential value of that network by a factor of sixteen. While a power of exactly 4.0 will usually be too high, due to redundancies, this does show how the cost of transportation can have a radical nonlinear impact on the value of the trade networks it enables.