Image for post
Image for post

(originally published by O’Reilly here, this year in collaboration with my amazing partner James Cham! If you’re interested in enterprise implications of this chart please refer to Harvard Business Review’s The Competitive Landscape for Machine Intelligence)

Almost a year ago, we published our now-annual landscape of machine intelligence companies, and goodness have we seen a lot of activity since then. This year’s landscape has a third more companies than our first one did two years ago, and it feels even more futile to try to be comprehensive, since this just scratches the surface of all of the activity out there.

As has been the case for the last couple of years, our fund still obsesses over “problem first” machine intelligence — we’ve invested in 35 machine intelligence companies solving 35 meaningful problems in areas from security to recruiting to software development. …


Image for post
Image for post

(This article was originally posted at https://www.oreilly.com/ideas/the-current-state-of-machine-intelligence-2-0)

A year ago, I published my original attempt at mapping the machine intelligence ecosystem. So much has happened since. I spent the last 12 months geeking out on every company and nibble of information I can find, chatting with hundreds of academics, entrepreneurs, and investors about machine intelligence. This year, given the explosion of activity, my focus is on highlighting areas of innovation, rather than on trying to be comprehensive. Figure 1 showcases the new landscape of machine intelligence as we enter 2016:

Despite the noisy hype, which sometimes distracts, machine intelligence is already being used in several valuable ways. Machine intelligence already helps us get the important business information we need more quickly, monitors critical systems, feeds our population more efficiently, reduces the cost of health care, detects disease earlier, and so on. …


Image for post
Image for post

(The 2016 Machine Intelligence landscape and post can be found here)

I spent the last three months learning about every artificial intelligence, machine learning, or data related startup I could find — my current list has 2,529 of them to be exact. Yes, I should find better things to do with my evenings and weekends but until then…

Why do this?

A few years ago, investors and startups were chasing “big data” (I helped put together a landscape on that industry). Now we’re seeing a similar explosion of companies calling themselves artificial intelligence, machine learning, or somesuch — collectively I call these “machine intelligence” (I’ll get into the definitions in a second). Our fund, Bloomberg Beta, which is focused on the future of work, has been investing in these approaches. I created this landscape to start to put startups into context. …

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store