# A Foolish Question

Is it possible to learn everything about a topic; to answer every question that can be asked?

Math teachers might point to the skill of addition, where 2 + 2 always equals 4.

But does it?

We would have to be assuming use of a decimal or base-ten numeral system, including all numbers from 0 to 10.

But what if we are using a *binary *numeral system; one based completely on 1’s and 0's?

Can we solve this exact problem using a binary numeral system?

What if we wrote out the problem as a word problem?

We would say, “two *somethings *plus two *somethings *equal four *somethings.”*

But can we say two glasses of water plus two glasses of water equal four glasses of water?

What if each glass had a different amount of water?In what other ways might 2 + 2 not equal four?

This creative or divergent thinking is sometimes referred to as “out-of-the-box thinking” and is highly valued by employers and businesses worldwide.

Being in the business of preparing students for college, career, and the world, shouldn’t *this* be the kind of thinking we are inspiring in our students, not seeking to correct?

We must prepare our students for a world in which all answerable questions have been answered — a world in which questions are more valuable than answers.

I know there are educators who value this kind of thinking.

If you are one of them, please share your thoughts, in the comments section below.

*Originally published at **www.techcoachz.com**.*