This post describes our recent work on Deep Reinforcement Learning (DRL) on the Atari benchmark. DRL appears today as one of the closest paradigm to Artificial General Intelligence and large progress in this field has been enabled by the popular Atari benchmark. However, training and evaluation protocols on Atari vary across papers leading to biased comparisons, difficulty in reproducing results and in estimating the true contributions of the methods. Here we attempt to mitigate this problem with SABER: a Standardized Atari BEnchmark for general Reinforcement learning algorithms. SABER allows us to compare multiple methods under the same conditions against a human baseline and to note that previous claims of superhuman performance on DRL do not hold. Finally, we propose a new state-of-the-art algorithm R-IQN combining Rainbow with Implicit Quantile Networks (IQN). …


We are a research team on artificial intelligence for automotive applications working toward assisted and autonomous driving.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store