Non-Euclidean Geometry 非ユークリッド幾何学

From Wikipedia;

In mathematics, non-Euclidean geometry consists of two geometries based on axiomsclosely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras which give rise to kinematic geometries that have also been called non-Euclidean geometry.

The essential difference between the metric geometries is the nature of parallel lines. Euclid’s fifth postulate, the parallel postulate, is equivalent to Playfair’s postulate, which states that, within a two-dimensional plane, for any given line and a point A, which is not on , there is exactly one line through A that does not intersect . In hyperbolic geometry, by contrast, there are infinitely many lines through A not intersecting , while in elliptic geometry, any line through A intersects .

Another way to describe the differences between these geometries is to consider two straight lines indefinitely extended in a two-dimensional plane that are both perpendicular to a third line:

  • In Euclidean geometry the lines remain at a constant distance from each other (meaning that a line drawn perpendicular to one line at any point will intersect the other line and the length of the line segment joining the points of intersection remains constant) and are known as parallels.
  • In hyperbolic geometry they “curve away” from each other, increasing in distance as one moves further from the points of intersection with the common perpendicular; these lines are often called ultraparallels.
  • In elliptic geometry the lines “curve toward” each other and intersect.

Axiomatic basis of non-Euclidean geometry

Euclidean geometry can be axiomatically described in several ways. Unfortunately, Euclid’s original system of five postulates (axioms) is not one of these as his proofs relied on several unstated assumptions which should also have been taken as axioms. Hilbert’s system consisting of 20 axioms[16]most closely follows the approach of Euclid and provides the justification for all of Euclid’s proofs. Other systems, using different sets of undefined terms obtain the same geometry by different paths. In all approaches, however, there is an axiom which is logically equivalent to Euclid’s fifth postulate, the parallel postulate. Hilbert uses the Playfair axiom form, while Birkhoff, for instance, uses the axiom which says that “there exists a pair of similar but not congruent triangles.” In any of these systems, removal of the one axiom which is equivalent to the parallel postulate, in whatever form it takes, and leaving all the other axioms intact, produces absolute geometry. As the first 28 propositions of Euclid (in The Elements) do not require the use of the parallel postulate or anything equivalent to it, they are all true statements in absolute geometry.[17]

To obtain a non-Euclidean geometry, the parallel postulate (or its equivalent) must be replaced by its negation. Negating the Playfair’s axiom form, since it is a compound statement (… there exists one and only one …), can be done in two ways:

  • Either there will exist more than one line through the point parallel to the given line or there will exist no lines through the point parallel to the given line. In the first case, replacing the parallel postulate (or its equivalent) with the statement “In a plane, given a point P and a line not passing through P, there exist two lines through P which do not meet ” and keeping all the other axioms, yields hyperbolic geometry.[18]
  • The second case is not dealt with as easily. Simply replacing the parallel postulate with the statement, “In a plane, given a point P and a line not passing through P, all the lines through P meet ”, does not give a consistent set of axioms. This follows since parallel lines exist in absolute geometry,[19] but this statement says that there are no parallel lines. This problem was known (in a different guise) to Khayyam, Saccheri and Lambert and was the basis for their rejecting what was known as the “obtuse angle case”. In order to obtain a consistent set of axioms which includes this axiom about having no parallel lines, some of the other axioms must be tweaked. The adjustments to be made depend upon the axiom system being used. Among others these tweaks will have the effect of modifying Euclid’s second postulate from the statement that line segments can be extended indefinitely to the statement that lines are unbounded. Riemann’s elliptic geometry emerges as the most natural geometry satisfying this axiom.

Wikipediaより;

非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。

ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。

平行線公準

ユークリッドの著した「原論」(‘element’)の1~4巻に於いては、今日で言うところのユークリッド幾何学に関して、古代ギリシア数学の成果がまとめられている。

さて、「原論」では最初にいくつかの公理公準を述べているが、その中の第5公準が次の、平行線公準と呼ばれるものである。

1 直線が 2 直線に交わり、同じ側の内角の和を 2 直角より小さくするならば、この 2 直線は限りなく延長されると、2 直角より小さい角のある側において交わること。

これは他の公理に比べて自明性は低く、また明らかに冗長であったので、いくつかの疑念を生ずることとなった。

  • 公理・公準として扱うことは正しいのだろうか? 定理なのでは無いだろうか。
  • あるいは、もっと自明で簡潔な、同値命題が存在するのではないだろうか。

ここから、平行線公準の証明の試み、あるいは平行線公準の言い換えの試みが始まった。

古代ギリシア

  • プロクロスは、「原論」の注釈書に於いて平行線公準が定理なのではないかと述べている。
  • プトレマイオスは「平行線公準を証明した」と主張したが、その証明は巡り巡って「原論」第1 巻命題 29 に依っており、命題 29 は平行線公準により証明されているので主張は正しくなかった。

アラビア

近代ヨーロッパ

古代ギリシャ以降も、無数の「平行線公準の証明」が生まれたが、多くはプトレマイオスと同じ過ちを犯していた。しかし、その結果として「平行線公準と同値な命題」が作られた。

ジョバンニ・ジローラモ・サッケーリは、1773年、論文「あらゆる汚点から清められたユークリッド」(Euclides ab Omni Naevo Vindicatus)において、鋭角仮定・直角仮定・鈍角仮定という互いに背反かついずれかは成立するような仮定を設定し、直角仮定から平行線公準を導けることを示した。

同論文の定理 9 および定理 15 により、各仮定をより分かりやすく言い換えるなら次の通りである。

鋭角仮定三角形の内角の和は 2 直角よりも小さい直角仮定三角形の内角の和は 2 直角に等しい鈍角仮定三角形の内角の和は 2 直角よりも大きい

サッケーリは、鈍角仮定および鋭角仮定は矛盾を生じると主張したが、その証明に於いてはやはり平行線公準に依存する命題を使ってしまっており、証明としては正しくなかった。しかしながら、上の 3 つの分類はその後の非ユークリッド幾何学の構築に大きな役割を果たした。

またヨハン・ハインリッヒ・ランベルト1766年執筆の論文「平行線の理論」に於いて同様の主張をしている(この論文は1786年に発見された)。

カール・フリードリヒ・ガウスは、1824年11月8日の手紙に於いて、鋭角仮定のもとで整合的な幾何学が成立する可能性を示唆し、そこにはある定数があってこれが大きいほど通常の幾何学に近づくと述べた。

ガウスの言うある定数とは、現代の言葉で言えば空間の曲率 k に対し、-(1/k)のことである。ガウス個人は非ユークリッド幾何の存在を確信していたと見られるが、宗教論争に巻き込まれる事を恐れてか公表はしていない。

非ユークリッド幾何学の成立

ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。

ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。

ベルンハルト・リーマン

あわせて4人が3通りの方法を発見した。その結果をまとめると以下のようになる。なお、ここでは曲がった面上や空間内の「直線」は二点間の最短距離を指す。平行線は絶対に交わらない二本の直線である。

Models of non-Euclidean geometry

For more details on this topic, see Models of non-Euclidean geometry.

On a sphere, the sum of the angles of a triangle is not equal to 180°. The surface of a sphere is not a Euclidean space, but locally the laws of the Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is very nearly 180°.

Two dimensional Euclidean geometry is modelled by our notion of a “flat plane.”

Elliptic geometry

Main article: Elliptic geometry

The simplest model for elliptic geometry is a sphere, where lines are “great circles” (such as the equator or the meridians on a globe), and points opposite each other (called antipodal points) are identified (considered to be the same). This is also one of the standard models of the real projective plane. The difference is that as a model of elliptic geometry a metric is introduced permitting the measurement of lengths and angles, while as a model of the projective plane there is no such metric.

In the elliptic model, for any given line and a point A, which is not on , all lines through A will intersect .

Hyperbolic geometry

Main article: Hyperbolic geometry

Even after the work of Lobachevsky, Gauss, and Bolyai, the question remained: “Does such a model exist for hyperbolic geometry?”. The model for hyperbolic geometry was answered by Eugenio Beltrami, in 1868, who first showed that a surface called the pseudosphere has the appropriate curvature to model a portion of hyperbolic space and in a second paper in the same year, defined the Klein model which models the entirety of hyperbolic space, and used this to show that Euclidean geometry and hyperbolic geometry were equiconsistent so that hyperbolic geometry was logically consistent if and only if Euclidean geometry was. (The reverse implication follows from the horosphere model of Euclidean geometry.)

In the hyperbolic model, within a two-dimensional plane, for any given line and a point A, which is not on , there are infinitely many lines through Athat do not intersect .

In these models the concepts of non-Euclidean geometries are being represented by Euclidean objects in a Euclidean setting. This introduces a perceptual distortion wherein the straight lines of the non-Euclidean geometry are being represented by Euclidean curves which visually bend. This “bending” is not a property of the non-Euclidean lines, only an artifice of the way they are being represented.

From YouTube;

PDF ;

日本語ビデオ;

日本語PDF;

--

--