AITS Journal
Published in

AITS Journal

Cardiovascular diseases

Photo by Mat Voyce on Dribbble

Are the most common cause of deaths globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Heart failure is a common event caused by Cardiovascular diseases.

It is characterized by the heart’s inability to pump an adequate supply of blood to the body. Without sufficient blood flow, all major body functions are disrupted. Heart failure is a condition or a collection of symptoms that weaken the heart.

TABLE OF CONTENTS

IMPORTING LIBRARIES

LOADING DATA

DATA ANALYSIS

DATA PREPROCESSING

MODEL BUILDING

CONCLUSIONS

IMPORTING LIBRARIES

LOADING DATA

About the data:

Age: Age of the patient

anaemia: If the patient had the hemoglobin below the normal range creatinine phosphokinase: The level of the creatine phosphokinase in the blood in mcg/L

diabetes: If the patient was diabetic ejection fraction: Ejection fraction is a measurement of how much blood the left ventricle pumps out with each contraction

high_blood_pressure: If the patient had hypertension

platelets: Platelet count of blood in kilo platelets/mL

serum_creatinine: The level of serum creatinine in the blood in mg/dL

serum_sodium: The level of serum sodium in the blood in mEq/L

sex: The sex of the patient

smoking: If the patient smokes actively or ever did in past

time: It is the time of the patient’s follow-up visit for the disease in months

DEATH_EVENT: If the patient deceased during the follow-up period

DATA ANALYSIS

Steps in data analysis and visulisation:

We begin our analysis by plotting a count plot of the targer attribute. A corelation matrix od the various attributes to examine the feature importance.

Notable points:

Time of the patient’s follow-up visit for the disease is crucial in as initial diagnosis with cardiovascular issue and treatment reduces the chances of any fatality. It holds and inverse relation.

Ejection fraction is the second most important feature. It is quite expected as it is basically the efficiency of the heart.

Age of the patient is the third most correlated feature. Clearly as heart’s functioning declines with ageing

Next, we will examine the count plot of age.

I spotted outliers on our dataset. I didn’t remove them yet as it may lead to overfitting. Though we may end up with better statistics. In this case, with medical data, the outliers may be an important deciding factor.

Next, we examine the kde plot of time and age as they both are significant features.

DATA PREPROCESSING

Steps involved in Data Preprocessing

Dropping the outliers based on data analysis

Assigning values to features as X and target as y

Perform the scaling of the features

Split test and training sets

MODEL BUILDING

In this project, we build an artificial neural network.

Following steps are involved in the model building

Initialising the ANN

Defining by adding layers

Compiling the ANN

Train the ANN

Plotting training and validation accuracy over epochs

CONCLUSIONS

Concluding the model with:

Testing on the test set

Evaluating the confusion matrix

Evaluating the classification report

Saving the model

deep CC

Notebook Link : Here

Credit : Hrithikgupta

--

--

--

AI content from AITS associates with 💝. AITS is a deep learning company and lead developer of open source deep learning compiler.

Recommended from Medium

Effective Visualization of Multi-Dimensional Data — A Hands-on Approach

6 Ways to Maintain a Healthy Relationship as a Data Scientist

The Targeted Citizen

Helping Families with Data Science.

Looking to seamlessly integrate your time series annotation in your ML workflow? Look no further

Live music is running at 10% — This shows that simply lifting restrictions doesn’t get us back to…

Principal Component Analysis(PCA) Simplified

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
AI Technology & Systems

AI Technology & Systems

Simplifying AI development for EDGE devices

More from Medium

Learn to Learn like A Child — A Few Shots Learning for Image Classification

Journey of Deep Learning-Part 1

Artificial Neural Network:

Neural Network