Can Quantum Computing Unlock the Secrets of Black Holes?

The Cosmic Companion
Alexandria Science
Published in
4 min readMar 6, 2019

--

The “information paradox” of black holes has puzzled astronomers and physicists for years. Famed physicist Stephen Hawking devoted his last days to uncovering their secrets. But, researchers using a seven-qubit quantum computer have now started to unlock this mystery.

As matter falls into a black hole, all of the information about the particles — including their energy and momentum — gets scrambled together with all the other matter and energy within the black hole, seemingly lost forever. However, this is not supposed to happen — the laws of quantum mechanics state that information can never be lost, even when it enters the event horizon of a black hole, the boundary from which even light cannot escape.

Matter falling into a back hole, seen in an artist’s concept. Image credit: NASA’s Goddard Space Flight Center

In the mid-1970’s, Hawking realized that black holes can evaporate over time, releasing their energy into space, until they disappear. As particle/anti-particle pairs are generated near the event horizon of a black hole, it is possible for one member of the pair to fall into the black hole, while the other escapes to space. Over time, the body would lose mass. However, this is an extremely slow process — a black hole the size of our Sun would take 10⁶⁷ years (that’s a one with 67 zeros after it) to evaporate. This is trillions of times longer than the age of the Universe.

--

--

The Cosmic Companion
Alexandria Science

Making science fun, informative, and free to all. The Universe needs more science comedies.