Azure Databricks log runtime errors to Application insights
Published in
2 min readJul 13, 2021
Using open census library to push error logs to Azure monitor
Prerequisite
- Azure account
- Azure Databricks
- Azure Storage
Steps
- Create a Databricks cluster
- install library
opencensus-ext-azure
- Create a notebook
Code
- Choose python as language
import logging
from opencensus.ext.azure.log_exporter import AzureLogHandlerlogger = logging.getLogger(__name__)# TODO: replace the all-zero GUID with your instrumentation key.
logger.addHandler(AzureLogHandler(
connection_string='InstrumentationKey=xxxxx-xxxxxx-xxxxxx-xxxxxxx')
)
- now log some sample logs
logger.warning("Sample from open census test 01")
logger.error("Sample from open census test 02")
- Now lets log an exception
from opencensus.ext.azure.trace_exporter import AzureExporter
from opencensus.trace.samplers import ProbabilitySampler
from opencensus.trace.tracer import Tracerproperties = {'custom_dimensions': {'key_1': 'value_1', 'key_2': 'value_2'}}# Use properties in exception logs
try:
result = 1 / 0 # generate a ZeroDivisionError
except Exception:
logger.exception('Captured an exception.', extra=properties)
- Log into Application insights and go to logs
- the above test for done from — https://docs.microsoft.com/en-us/azure/azure-monitor/app/opencensus-python#configure-azure-monitor-exporters
Originally published at https://github.com.