# Cracking RSA — A Challenge Generator

Aug 27, 2018 · 2 min read
`RSA Encryption parameters. Public key: [e,N].e: 65537N: 498702132445864856509611776937010471Cipher: 96708304500902540927682601709667939We are using 60 bit primesCan you find the value of the message?`

## Example

`Encryption parameterse:	65537N:	1034776851837418228051242693253376923Cipher:	582984697800119976959378162843817868We are using  60 bit primes`
`Factors-------1,034,776,851,837,418,228,051,242,693,253,376,923 = 1,086,027,579,223,696,553 x 952,809,000,096,560,291`
`>>>p=1086027579223696553>>>q=952809000096560291>>> print (p-1)*(q-1)1034776851837418226012406113933120080`
`Inverse of  65537  mod  1034776851837418226012406113933120080Result: 568411228254986589811047501435713`
`>>> d=568411228254986589811047501435713>>> cipher=582984697800119976959378162843817868>>> N=1034776851837418228051242693253376923>>> print pow(cipher,d,N)345`
`>>> m=345>>> e=65537>>> N=1034776851837418228051242693253376923>>> print pow(m,e,N)582984697800119976959378162843817868`

## Conclusions

`RSA Encryption parameters. Public key: [e,N].e: 65537N: 911844725340031776516886332975892441Cipher: 801127314512167104045686292190207406We are using 60 bit primesCan you find the value of the message?`
`RSA Encryption parameters. Public key: [e,N].e: 65537N: 1157170973102575683016736411062049761643292045397Cipher: 398616441584847118291875619819339172891325623639We are using 80 bit primesCan you find the value of the message?`
`RSA Encryption parameters. Public key: [e,N].e: 65537N: 49141939931137261116843775362783398673931258031923895283286320973486872970729Cipher: 14199123787046830048066972290052136769415356824981695836360604590953658335413We are using 128 bit primesCan you find the value of the message?`

Written by