Gigascrap: The Path To Matching Li-ion Production & Recycling Capacity In Europe

BatteryBits
Mar 27 · 7 min read

This work is contributed by Charlie Parker

  • The European Union/European Economic Area (EU) proposed battery regulation seeks to create a closed-loop, cradle to cradle battery production ecosystem with mandatory, traceable recycling and recycled content in lithium-ion batteries.
  • Production scrap from new EU factories will necessitate a rapid ramp-up in recycling capacity. A mix of incumbent recyclers and startups will deploy newly developed technology native to lithium-ion through acquisitions, licensing, and public financing.
  • Second-life, early scrap age, total loss accidents, and “vestigial hybrids” will shift the majority of recycling feedstock away from OEM repair shops and towards “orphan” or “stranded’’ batteries. Point of collection diagnostic and processing which reduce hazardous shipping will provide solutions to expensive and complex logistics arising from an increasing number of collection points.

Regulation Induced Development

On December 10, 2020 The European Commission released a proposal for the regulation of lithium-ion batteries. This proposal encompasses the entire cradle-to-cradle lifecycle and has proposed standards in the lithium-ion ecosystem that have prompted many stakeholders to act. This has also impacted ecosystems outside the EU in anticipation of a similar regulatory framework.

In practice, the energy storage value chain will operate within EU borders as much as possible, necessitating the need for European li-ion recycling facilities amongst other supporting industries. The amount of new investment needed for recycling facilities will be in the billions of euros by the end of this decade, so it is critical to determine when and how much recycling capacity is needed.

We have analyzed recycling technologies, feedstock, and waste process paths to gain a better understanding of the quantity and throughput of waste batteries. In-process and end-of-line production scrap will amount to GWh equivalents if the EU gigafactory pipeline meets capacity as planned. We have also spoken with senior engineers and managers in battery production to aid in forecasting lithium-ion recycling capacity requirements within the EU.

Recycling Ecosystem — Technology Shift & New Entrants

Until recently, lithium-ion batteries were only recycled using pyrometallurgical processes. The combination of low material recovery and high processing costs resulted in recyclers assessing ‘gate fees’, often resulting in excessive costs for proper disposal. Recently developed mechanical and hydrometallurgical processes have lowered costs and increased material recovery enough to make recycling profitable without gate fees, in many cases giving waste batteries intrinsic value.

The announcements of significant precursor capacity in the EU by BASF, Terrafame, and others will help ensure that recovered battery material from all EU sources are used to produce batteries in EU factories. With local customers and feedstock suppliers as well as easier facility siting than pyrometallurgical smelters, European recyclers can achieve economies of scale and in some cases, be co-located with customers and suppliers.

Feedstock Characterization

Manufacturing Scrap — Generated from electrodes and other trimmings as well as in-process and finished products that fail quality control.

Consumer Electronics — Typically smaller-format prismatic or cylindrical cells with high cobalt content.

Auto OEM EV Batteries — Traction batteries from HEVs, PHEVs, and BEVs. We are assuming that all BEV batteries will be placed in a second-life application and will not need to be recycled before 2030. We will only model HEV and PHEV traction batteries.

ESS — Energy storage systems typically use similar or the same batteries as BEVs and are lightly cycled in many applications. We predict many ESS batteries will not need to be recycled before 2030 and will not model this relatively small segment.

Process Path Characterization

Manufacturing Scrap — Material wastage from all production processes can account for 10%-30% of material inputs. We will conservatively estimate 30%, 20%, 10%, and 5% in years one, two, three, and thereafter, respectively and apply it to the January 2021 European Gigafactory pipeline by Roland Zenn. We also assume EU capacity will meet EU demand using the BNEF EV forecast.

American Manganese investor presentation
Samsung Ulsan factory yield rates

Consumer Electronics — We estimate the EU purchases 12.4% of global consumer electronics containing batteries. This amounts to 4.96 GWh of the global 40 GWh utilized in consumer electronics every year. We will assume an average of 4 years in service before recycling and a 4% annual increase in deployed capacity.

HEV + PHEV — We utilized sales data from the Bloomberg terminal and assumed a 15-year peak scrap age with average pack sizes of 10 kWh and 2 kWh for PHEVs and HEVs, respectively. We do not foresee many packs being replaced before the cars are scrapped due to light duty cycles and consumer behavior. Most consumers are unwilling to pay for a repair that Is comparable to the cost of the car. We predict that this will lead to ‘vestigial hybrid’ batteries in cars that operate normally without a functioning traction battery. For others, a damaged battery pack during an accident will lead to a higher number of total loss accidents per capita for all EVs. This will lead to an earlier overall scrap age. In all cases, we see most EOL EV batteries originating from auto recycler yards as ‘orphan’ or ‘stranded’ batteries and not OEM repair shops as many have assumed.

Conclusion — EU Recycling Capacity Forecast

Based on available and reliable market data and forecasts along with the preceding assumptions, we believe the EU should have at least 20 GWh/200,000 tons of native lithium-ion recycling capacity by 2023 and resume building capacity after 2030 to accommodate end of life BEV batteries and additional scrap from the expansion of EU battery manufacturing.

Less than 20,000 tons of annual capacity is in commercial operation in the EU with REDUX, Akkuser, and Duesenfeld accounting for the majority of current capacity. The additional 18 GWh/180,000 tons of additional capacity may cost up to €2.7 billion at €150 million per 1 GWh/10,000 tons. However, this investment should not be hard to attract. Akihito Fujita, senior manager at Nomura Research Institute America has stated “From 2025 Europe should be profitable with economics [sic] of scale. Even if the price of nickel-manganese-cobalt remains the same. I believe most of the cost reductions will be from economics [sic] of scale. I also hope that by 2030 cost will be better than 2025, and the industry will be even more profitable.”

[Our assumptions are conservative and we discounted or omitted relevant but less significant factors like the export of used xEVs and consumer electronics. We wanted to keep the model simple in the 2021–2030 window to show that production scrap will be the impetus to ramp up recycling capacity for the EOL batteries being manufactured by EU gigafactories. This also assumes scrap exports will continue as long as scrap supply exceeds regional recycling capacity.]

References

  1. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12399-Modernising-the-EU-s-batteries-legislation
  2. https://cen.acs.org/energy/energy-storage-/Europe-contender-electric-vehicle-batteries/98/i27
  3. https://www.somo.nl/wp-content/uploads/2020/12/SOMO-The-battery-paradox.pdf
  4. https://li-cycle.com/wp-content/uploads/2021/02/Li-Cycle-Investor-Presentation-February-2021-1.pdf
  5. https://americanmanganeseinc.com/wp-content/uploads/2020/12/AMY_Presentation-Dec2020.pdf
  6. https://www.slideshare.net/EdmondKwok1/samsung-sdi-plant-project/1
  7. Based on 2017 mobile phone sales by region, Bloomberg terminal
  8. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Sustainability/Our%20Insights/Powering%20up%20sustainable%20energy/Powering-up-sustainable-energy.ashx
  9. https://warwick.ac.uk/fac/sci/wmg/business/transportelec/22350m_wmg_battery_recycling_report_v7.pdf
  10. https://www.bestmag.co.uk/content/europe%E2%80%99s-lithium-ion-recycling-industry-reach-profitability-2025%E2%80%94-it-plays-catch-china

Acknowledgements

Thanks to Tim Suen, Linda Jing, Eric Y. Zheng and Nicholas Yiu for reviewing portions of the draft of this article and providing helpful feedback.

Charlie Parker is founder and principal consultant of Ratel Consulting, a market research and strategy consulting firm in Cambridge, Massachusetts. He leads the energy storage practice, which is technology agnostic with a focus on value chain throughout the lifecycle.

Interested in publishing in BatteryBits? Apply at this link to become a contributor.

Join our discussion with other battery professionals at the community slack space Battery Street!

BatteryBits

Insights and ideas produced by and for battery experts in industry, academia, policy, and finance.

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store