Schoolgirls in Paktia Province, Afghanistan. Image: Public domain (CC0)

Learning is its own reward

Understanding how new knowledge generates a feeling of enjoyment could help to develop more effective educational strategies.

eLife
3 min readDec 9, 2016

--

Research shows that a reward such as money, or even simply the promise of such a reward, can boost the formation of long-term memories. However, in our everyday lives, we continually gain new knowledge and make new memories in the absence of any obvious immediate reward.

Rewards activate a network of brain regions that includes the hippocampus, which has a key role in memory, plus several areas that release the chemical messenger dopamine, which boosts memory formation. However, it was not clear whether this network of brain regions also supports learning that is driven internally rather than by external rewards or incentives.

Pablo Ripollés and co-workers have now tested this idea by asking thirty-six volunteers to try and learn the meaning of new words by reading pairs of sentences, all while lying down inside a brain scanner. Half of the paired sentences provided a clear and obvious meaning for the new word. As such, the volunteers were reasonably aware when they’d learned the meaning of a new word without any external feedback. This approach confirmed that the activity of the brain’s reward-memory loop did indeed increase whenever a volunteer learned a new word.

Next, outside the brain scanner, the volunteers performed the same task but this time they had to rate how engaging and enjoyable they found it after each trial. Emotional responses such as enjoyment trigger sweating, which alters the electrical activity of the skin. Ripollés and colleagues observed greater changes in this “electrodermal” activity when the volunteers learned words that they would go on to remember one day later, than when they learned words that they would quickly forget. The volunteers also reported greater enjoyment when learning the words that they would subsequently remember better, even after seven days.

Overall, these findings suggest that internally driven learning is in itself rewarding, and that under certain circumstances at least it can activate the brain’s reward-memory circuit. A key question for the future is whether tapping into intrinsically rewarding forms of learning might be a more effective educational strategy than relying on external feedback and incentives. This could be crucial to improving the design of educational programs — for example, in teaching literacy and foreign languages — and for improving the recovery of verbal skills lost after stroke.

To find out more

Read the eLife research paper on which this eLife digest is based: “Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop” (September 20, 2016).

eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.
This text was reused under the terms of a Creative Commons Attribution 4.0 International License.

--

--