Image credit: Ian Jacobs (CC BY-NC 2.0)


A single neuron enables flies to switch between walking forward and backward.

When we choose to make one kind of movement, it often prevents us making another. We cannot move forward and backward at the same time, for example, and a horse cannot simultaneously gallop and walk. These ‘antagonistic’ behaviors often use the same group of muscles, but the muscles contract in a different order. This requires exquisite control over muscle contractions.

Neurons located in the central nervous system form circuits to produce distinct patterns of muscle contractions and to switch between these patterns. Smooth, rapid switching between behaviors is important for animal escape and survival, as well as for performing fine movements. However, we know little about how the activity of the neuronal circuits enables this.

Carreira-Rosario, Zarin, Clark et al. set out to identify the underlying neuronal circuitry that allows larval fruit flies to transition between crawling forward and backward. Results from a combination of genetics and microscopy techniques revealed that a neuron called the Mooncrawler Descending Neuron (MDN) induces a switch from forward to backward travel. MDN activates a neuron that stops the larvae crawling forward, and at the same time activates a different neuron that is only active when the larvae crawl backward. Carreira-Rosario et al. also found that MDN triggers backward crawling in the six-limbed adult fly.

Understanding how a single neuron — in this case MDN — can trigger a smooth switch between opposing behaviors could be beneficial for the medical and robotics fields. In the medical field, understanding how movement is generated could help to improve therapies that fix damage to the relevant neuronal circuits. Understanding how behavioral transitions occur may also help to design autonomous robots that can navigate complex terrain.

To find out more

Read the eLife research paper on which this eLife digest is based:
eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.
This text was reused under the terms of a Creative Commons Attribution 4.0 International License.