Next time you glue your fingers together, think about the changes that are happening in your brain. Image credit: ep320 (CC BY 2.0)

Rapid remapping

Studying glued-together fingers reveals that the brain’s map of the body starts to adjust to change within 24 hours.

--

The areas of the brain that receive inputs from our senses have a map-like structure. In an area called the visual cortex this map represents our field of vision; in the auditory cortex, it represents the range of different tones we can hear. The sense of touch is processed in the somatosensory cortex: an area of the brain that is organised around a map of the body, with adjacent regions of the cortex representing adjacent regions of the body. The clear structure of these brain regions makes them ideal for exploring how the organisation of the brain changes over time.

How quickly can changes to the touch inputs that the brain receives cause the map in the somatosensory cortex to reorganise? Can these effects be produced in just 24 hours? And would this remapping affect how we perceive touch? To investigate these questions, James Kolasinski and colleagues glued together the right index and right middle fingers of healthy human volunteers. This separated the middle and ring fingers: a pair that usually move together due to the anatomical structure of the hand.

Functional magnetic resonance imaging of the brain’s activity revealed that within 24 hours of the gluing, the brain’s representation of the ring finger moved away from that of the middle finger, and towards the representation of the little finger. A perceptual judgment task mirrored this finding: after 24 hours of gluing, the participants became better at distinguishing between the middle and ring fingers and worse at distinguishing between the ring and little fingers. This is a powerful demonstration of the human brain’s potential to adapt and reorganise rapidly to changes to sensory inputs.

The sense of touch declines gradually with age and may also be reduced as a result of disease such as stroke. A long-term challenge is to understand how the sensory regions of the brain change during this loss of sensation. Further research could then investigate how to maintain the structure of the cortical map to prolong or restore high quality touch sensation.

To find out more

Read the eLife research paper on which this eLife digest is based: “Perceptually relevant remapping of human somatotopy in 24 hours” (March 14, 2017).

eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.
This text was reused under the terms of a Creative Commons Attribution 4.0 International License.

--

--