Traffic in Moscow. Image credit: Tom Grimbert (CC0)

Two-way traffic in sight

Brain imaging experiments reveal the role of feedback activity in our ability to recognize visual objects.

The human brain can interpret the visual world in less than the blink of an eye. Specialized brain regions process different aspects of visual objects. These regions form a hierarchy. Areas at the base of the hierarchy process simple features such as lines and angles. They then pass this information onto areas above them, which process more complex features, such as shapes. Eventually the area at the top of the hierarchy identifies the object. But information does not only flow from the bottom of the hierarchy to the top. It also flows from top to bottom. The latter is referred to as feedback activity, but its exact role remains unclear.

Mohsenzadeh et al. used two types of imaging to map brain activity in space and time in healthy volunteers performing a visual task. The volunteers had to decide whether a series of images that flashed up briefly on a screen included a face or not. The results showed that the brain adapts its visual processing strategy to suit the viewing conditions. They also revealed three key principles for how the brain recognizes visual objects.

First, if early visual information is incomplete — for example, because the images appeared only briefly — higher regions of the hierarchy spend more time processing the images. Second, when visual information is incomplete, higher regions of the hierarchy send more feedback down to lower regions. This leads to delays in identifying the object. And third, lower regions in the hierarchy — known collectively as early visual cortex — process the feedback signals. This processing takes place at the same time as the higher levels identify the object.

Knowing the role of feedback is critical to understanding how the visual system works. The next step is to develop computer models of visual processing. The current findings on the role of feedback should prove useful in designing such models. These might ultimately pave the way to developing treatments for visual impairments caused by damage to visual areas of the brain.

To find out more

Read the eLife research paper on which this eLife digest is based:
eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.
This text was reused under the terms of a Creative Commons Attribution 4.0 International License.
Like what you read? Give eLife a round of applause.

From a quick cheer to a standing ovation, clap to show how much you enjoyed this story.