Introduction to all types of Autoencoders with Python
--
What are Autoencoders?
Autoencoders are a type of neural network that can learn to compress and decompress data. The basic idea is to train a neural network to take an input and transform it into a lower-dimensional representation (encoding), and then use this lower-dimensional representation to reconstruct the original input (decoding).
In other words, autoencoders are a type of unsupervised learning algorithm that learn to compress data by creating a compressed representation of the input data (the encoding), and then reconstructing the original data from the compressed representation (the decoding).
Autoencoders are useful for a variety of tasks, such as dimensionality reduction, data compression, and denoising. They have also been used for image and speech recognition, and natural language processing.
Autoencoders can be trained using backpropagation, which adjusts the weights of the neural network in order to minimize the difference between the original input and the reconstructed output. There are various types of autoencoders, including basic autoencoders, denoising autoencoders, variational autoencoders, and convolutional autoencoders, each with their own specific architectures and use cases.
Here's a simple example of an autoencoder in Python using Keras and TensorFlow:
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
# Define input size
input_size = 784 # 28x28
# Define encoding and decoding size
encoding_size = 64
# Define input layer
input_layer = Input(shape=(input_size,))
# Define encoding layer
encoding_layer = Dense(encoding_size, activation='relu')(input_layer)
# Define decoding layer
decoding_layer = Dense(input_size, activation='sigmoid')(encoding_layer)
# Create the autoencoder model
autoencoder = Model(input_layer, decoding_layer)
# Compile the model
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# Print the model summary
autoencoder.summary()
In this example, we are creating a simple autoencoder with a single hidden layer of 64 neurons, which encodes an input image of size 784 (28x28 pixels) into a smaller representation, and then decodes it back to the original image. We are using the binary crossentropy loss function and the Adam optimizer. Once the model is created and compiled, we can train it on our data using the fit()
method.
Variational Autoencoder
Variational Autoencoder (VAE) is a type of neural network used for unsupervised learning that learns a low-dimensional representation of high-dimensional data. It has an encoder-decoder architecture, where the encoder maps high-dimensional input data to a low-dimensional latent space, and the decoder maps the latent space back to the original input space.
In contrast to traditional autoencoders, VAEs use probabilistic models to learn the underlying distribution of the data, allowing them to generate new samples from that distribution. VAEs are trained to minimize a loss function that balances the reconstruction error (how well the decoder can reconstruct the input data) with the KL divergence between the learned distribution and a prior distribution (typically a standard normal distribution).
Here's an example of a Variational Autoencoder (VAE) using Python and the Keras deep learning library. This code should train a VAE on the MNIST dataset and generate new digit images from the learned latent space.
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
latent_dim = 2
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var], name="encoder")
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def train_step(self, data):
if isinstance(data, tuple):
data = data[0]
with tf.GradientTape() as tape:
z_mean, z_log_var = self.encoder(data)
z = self.sampling((z_mean, z_log_var))
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
keras.losses.binary_crossentropy(data, reconstruction)
)
reconstruction_loss *= 28 * 28
kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss)
kl_loss *= -0.5
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
return {
"loss": total_loss,
"reconstruction_loss": reconstruction_loss,
"kl_loss": kl_loss,
}
def call(self, data):
z_mean, z_log_var = self.encoder(data)
z = self.sampling((z_mean, z_log_var))
return self.decoder(z)
def sampling(self, args):
z_mean, z_log_var = args
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
# Normalize image data
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
x_train = np.expand_dims(x_train, -1).astype("float32") / 255.0
x_test = np.expand_dims(x_test, -1).astype("float32") / 255.0
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam())
vae.fit(x_train, epochs=30, batch_size=128)
# Generate new images from the learned latent space
n = 10
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# Sample random vectors from a normal distribution
z_sample = np.random.normal(size=(n * n, latent_dim))
# Decode the vectors into images
x_decoded = decoder.predict(z_sample)
# Reshape the images and combine them into a grid
for i in range(n):
for j in range(n):
digit = x_decoded[i * n + j].reshape(digit_size, digit_size)
figure[i * digit_size : (i + 1) * digit_size,
j * digit_size : (j + 1) * digit_size] = digit
# Plot the grid of images
plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap="Greys_r")
plt.axis("off")
plt.show()
Under Complete Autoencoder
An undercomplete autoencoder is an autoencoder that learns to compress input data into a lower-dimensional latent space. In this case, the dimensionality of the latent space is smaller than the dimensionality of the input data, which creates a bottleneck and forces the autoencoder to learn a more compact representation of the data.
One way to create an undercomplete autoencoder is to use a bottleneck layer with fewer neurons than the input and output layers. The encoder maps the input data to the latent space through this bottleneck layer, and the decoder maps the latent space back to the output data.
Here is an example of how to implement an undercomplete autoencoder in Python using Keras and TensorFlow on the same MNIST dataset:
import numpy as np
from tensorflow import keras
# Load the MNIST dataset
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
# Normalize the data and reshape it
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape[0], -1)
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape[0], -1)
# Set the dimensionality of the encoding space
encoding_dim = 32
# Define the input layer
input_img = keras.Input(shape=(784,))
# Define the encoded layer
encoded = keras.layers.Dense(encoding_dim, activation='relu')(input_img)
# Define the decoded layer
decoded = keras.layers.Dense(784, activation='sigmoid')(encoded)
# Define the autoencoder model
autoencoder = keras.Model(input_img, decoded)
# Define the encoder model
encoder = keras.Model(input_img, encoded)
# Define the decoder model
decoder_input = keras.Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = keras.Model(decoder_input, decoder_layer(decoder_input))
# Compile the autoencoder model
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# Train the autoencoder model
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))
# Encode and decode some digits from the test set
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
Sparse Autoencoder
A sparse autoencoder is a type of autoencoder that is designed to learn a compressed representation of the input data while also enforcing sparsity in the learned representation. The sparsity constraint encourages the autoencoder to learn a representation that uses only a small number of neurons in the hidden layer to encode the input. This can help to reduce overfitting and improve the interpretability of the learned representation.
In a sparse autoencoder, the sparsity constraint is typically achieved by adding a regularization term to the loss function that penalizes the hidden layer activations that are significantly different from a small target value.
Here's an example of how to implement a sparse autoencoder in Python using Keras and TensorFlow:
import numpy as np
from tensorflow import keras
# Load the MNIST dataset
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
# Normalize the data and reshape it
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape[0], -1)
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape[0], -1)
# Set the dimensionality of the encoding space
encoding_dim = 32
# Define the input layer
input_img = keras.Input(shape=(784,))
# Define the encoded layer with a sparsity constraint
encoded = keras.layers.Dense(encoding_dim, activation='relu',
activity_regularizer=keras.regularizers.l1(10e-5))(input_img)
# Define the decoded layer
decoded = keras.layers.Dense(784, activation='sigmoid')(encoded)
# Define the autoencoder model
autoencoder = keras.Model(input_img, decoded)
# Define the encoder model
encoder = keras.Model(input_img, encoded)
# Define the decoder model
decoder_input = keras.Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = keras.Model(decoder_input, decoder_layer(decoder_input))
# Compile the autoencoder model
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# Train the autoencoder model
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))
# Encode and decode some digits from the test set
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
Denoising Autoencoder
A denoising autoencoder is a type of autoencoder that is designed to remove noise from the input data. It is trained on corrupted versions of the input data, where the noise can be introduced in various ways such as adding Gaussian noise, masking random pixels or applying random rotations to the input data. The autoencoder then learns to reconstruct the original input data from the corrupted version, which can be used to remove the noise from new, unseen data.
Here's an example of how to implement a denoising autoencoder in Python using Keras and TensorFlow:
import numpy as np
from tensorflow import keras
# Load the MNIST dataset
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
# Normalize the data and reshape it
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape[0], -1)
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape[0], -1)
# Add random Gaussian noise to the input data
noise_factor = 0.5
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
# Clip the noisy data to be between 0 and 1
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
# Set the dimensionality of the encoding space
encoding_dim = 32
# Define the input layer
input_img = keras.Input(shape=(784,))
# Define the encoded layer
encoded = keras.layers.Dense(encoding_dim, activation='relu')(input_img)
# Define the decoded layer
decoded = keras.layers.Dense(784, activation='sigmoid')(encoded)
# Define the denoising autoencoder model
autoencoder = keras.Model(input_img, decoded)
# Compile the autoencoder model
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# Train the autoencoder model
autoencoder.fit(x_train_noisy, x_train,
epochs=50,
batch_size=256,
shuffle=True,
validation_data=(x_test_noisy, x_test))
# Use the autoencoder to remove noise from some digits in the test set
decoded_imgs = autoencoder.predict(x_test_noisy)
In this example, we add Gaussian noise to the input data with a factor of 0.5
, which creates a noisy version of the original data. We then train a denoising autoencoder to reconstruct the original data from the noisy version. The rest of the implementation is similar to that of a regular autoencoder. After training, we can use the denoising autoencoder to remove noise from some digits in the test set by passing the noisy data through the autoencoder and obtaining the reconstructed output.
Contractive Autoencoder
A contractive autoencoder is a type of autoencoder that is designed to learn a more robust representation of the input data by imposing an additional regularization term on the loss function. This regularization term encourages the autoencoder to learn a compressed representation of the input data that is invariant to small perturbations in the input space. This is done by penalizing the derivative of the encoder output with respect to the input.
Here's an example of how to implement a contractive autoencoder in Python using Keras and TensorFlow:
import numpy as np
from tensorflow import keras
# Load the MNIST dataset
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
# Normalize the data and reshape it
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape[0], -1)
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape[0], -1)
# Set the dimensionality of the encoding space
encoding_dim = 32
# Define the input layer
input_img = keras.Input(shape=(784,))
# Define the encoded layer
encoded = keras.layers.Dense(encoding_dim, activation='relu')(input_img)
# Define the decoded layer
decoded = keras.layers.Dense(784, activation='sigmoid')(encoded)
# Define the contractive autoencoder model
autoencoder = keras.Model(input_img, decoded)
# Define the regularization coefficient
lam = 1e-4
# Define the loss function with the regularization term
def contractive_loss(y_true, y_pred):
mse = keras.losses.mean_squared_error(y_true, y_pred)
w = autoencoder.get_layer('dense').kernel
w = keras.backend.transpose(w)
h = autoencoder.get_layer('dense').output
dh = h * (1 - h)
contractive = lam * keras.backend.sum(dh**2 * keras.backend.sum(w**2, axis=1), axis=1)
return mse + contractive
# Compile the autoencoder model with the custom loss function
autoencoder.compile(optimizer='adam', loss=contractive_loss)
# Train the autoencoder model
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))
# Encode and decode some digits from the test set
encoded_imgs = autoencoder.predict(x_test)
Autoencoder Use Cases
Data Compression
Autoencoders are often used for data compression. This is done by training the autoencoder to learn a compressed representation of the input data. The compressed representation can then be stored or transmitted with less space and bandwidth requirements. This use case is particularly relevant for large datasets where efficient storage and transmission are essential.
Dimensionality Reduction
Autoencoders can be used for dimensionality reduction, which involves reducing the number of features or variables in a dataset. This can be helpful for reducing the complexity of a model or simplifying the data. By compressing the input data into a lower-dimensional representation, autoencoders can help identify the most important features or variables in a dataset, making it easier to analyze and visualize.
Anomaly Detection
Autoencoders can be used for anomaly detection, where the goal is to identify data points that are significantly different from the rest of the dataset. By training an autoencoder on a dataset, the network can learn to recognize the patterns that are typical for the dataset. When presented with a new data point, the autoencoder can compare it to the learned patterns and identify if it is an anomaly.
Image and Audio Reconstruction
Autoencoders can also be used for image and audio reconstruction. By training an autoencoder on a dataset of images or audio samples, the network can learn to reconstruct the input data from a compressed representation. This can be useful for tasks such as image and audio denoising, where the goal is to remove noise from the input data.
Data Generation
Finally, autoencoders can be used for data generation, where the goal is to generate new data points that are similar to the training data. By training an autoencoder on a dataset, the network can learn to generate new data points that share similar features or characteristics.
Please consider supporting my cousin’s clothing brand, you do not need to make a purchase simply following this post on Instagram is a blessing: https://instagram.com/evestiaralifestyle?igshid=ZDdkNTZiNTM=
FREE PDF to Text CONVERTER Click here: Convert pdf to text for free!
Plug: Please purchase my book ONLY if you have the means to do so, I usually do not advertise, but I am struggling to stay afloat. Imagination Unleashed: Canvas and Color, Visions from the Artificial: Compendium of Digital Art Volume 1 (Artificial Intelligence Draws Art) — Kindle edition by P, Shaxib, A, Bixjesh. Arts & Photography Kindle eBooks @ Amazon.com.