Introduction to SQL Server Query Store
What does the query store do for you?
Introduction
Have you ever experienced your system slowing down or completely down? What happens? Everyone is waiting for you to fix the problem as soon as possible! The Boss is over your desk!
Have you ever experienced upgrading an application to the latest version of SQL Server and facing an issue with plan change that slows your application down? Query plan choice change can cause these problems.
A performance problem related to the system database tempdb is not as hard to fix as a problem related to a query plan changes. You know, query plan changes give you more and more problems. As far as the tempdb is concerned, you can move it into a faster hard-drive or you can increase the number of the tempdb files, but when you have to find the slow running queries you have to figure out why they are slow!
Detecting and fixing problems you face for slow running queries takes you a long time because you have to look into the plan change and a question grows in your mind: What was the former plan like? So you try to find an answer for this question, but, has the SQL Server Data Collector been activated on the server? If the Data Collector hasn’t been activated the only tool you have to investigate slow running queries is the plan cache, but it may not be suitable for troubleshooting. When memory pressure occurs on the server, the queries you are finding could be already gone away from the cache. Finally, when you have the issue on your hands, can you modify the query text? If you cannot, do you know the system stored procedures to create and manage the Plan Guide?
Supposing you are given a query with two predicates on it, one predicate has the highest selectivity, which plan is the best?
Supposing you are given a query with two joint tables, for example you have the table A Joined to the table B. Which is the best way to implement the Join? A Joined to B or the opposite?
Imagine now a query that has 80 joint tables, how many execution plans will the Query Optimizer have to evaluate for a query that has 80 joint tables? There are probably millions execution plans to evaluate! SQL Server Query Optimizer considers many plans, but when your data changes, it might select a different plan.
What does the Query Store do for you?
The Query Store stores all the plan choices and related performance metrics for each query, it identifies queries that have become slower recently and it allows DBA to force an execution plan easily! If you force an execution plan for a particular query, it makes sure your changes work across server restart, upgrades, failover and query recompiles.
How the Query Store captures data?
Every time SQL Server compiles a query, a compile message comes into the Query Store and the execution plan of the query is stored. In the same way, when a query is executed, an execute message comes into the Query Store, the runtime statistics are stored into the Query Store after the query has been executed. Query Store aggregates the information according to the time granularity you have chosen, the aggregation will be done in memory (because we don’t want to kill the server) and then, based on the database option DATA_FLUSH_INTERVAL_SECONDS, aggregated data will be stored on disk in a background asynchronous way like the checkpoint mechanism.
I have just told you that the aggregation is done in memory and not on the disk, so suppose an unexpected shutdown occurs, how many in memory data would be lost? If you keep a smaller number of data in memory, you will have bigger IO cost and a smaller number of information will be lost in case of an unexpected shutdown, otherwise, if you keep a bigger number of data in memory, you will lose a larger number of data in case of an unexpected shutdown, but you will have smaller IO cost. This setting is your choice! The important thing is that you have the possibility to choice! If you want to see data captured by the Query Store, you need a tool that combines both In-Memory and On-Disk statistics. Each DMV related to the Query Store, joined In-Memory and On-Disk data. For example, the sys.query_store_runtime_stats groups In-Memory and On-Disk data in a unified place, so you can use it in your scripts or in your application.
Let’s talk about how the Query Store interprets the query text. The query text is the characters’ section between the first character of the first token and the last character of the last token of the statement. Comments and spaces, before or after, don’t make any difference in the interpretation of the query text. On the contrary, what really counts are the comments and the spaces inside the query text. This logic is adopted to determine the differences among texts, each unique query text is stored just once in the DMV sys.query_store_query_text. The most important columns in this DMV are query_text_id and statement_sql_handle. In particular, query_text_id is used to identify a query on which you force the query plan.
Query Store DMV overview
The following picture shows an overview of the most important DMVs related to the Query Store. To keep this schema easy to read, I simplified the names of the DMVs, anyway you can find the real names of each DMV in the following description.
Every time we run a query, the SQL Engine knows the query’s text so the Query Store can store it into the Query_Text (the real name is sys.query_store_query_text) that is the starting point of this schema. As you know, the execution plan is influenced by the ANSI Options, so for each row of the Query_Text we can have several different rows in the Query_ANSI (the real name is sys.query_store_query), one row for each unique combination of the ANSI options. For each unique combination of ANSI Options, we can have several different execution plans. All the execution plans are stored in the Query_Plan (the real name is sys.query_store_plan) all over the time; the equivalent DMV on the previous version of SQL Server is the sys.dm_exec_query_plan, but it stores only the last execution plan and you cannot know what was the previous plan for a particular query. Runtime_Stats (the real name is sys.query_store_runtime_stats) contains the execution metrics and they are memorized in this way: One row per plan per time granularity. Suppose to have a time granularity set to 1 minute and a query that is executed three times a minute. For this scenario, in the Runtime_Stats we have one row that groups the execution metrics over that minute.
Let’s talk about the last two guys at the bottom, that one on the right is Runtime_Stats_Interval (the real name is sys.query_store_runtime_stats_interval), it is the detail of the Runtime_Stats. It stores one row per time granularity without information about the execution plan. The other one is the Context_Settings (the real name is sys.query_context_settings) that stores one row per unique combination of set options. Suppose to have a query executed by two different providers, you will have two context settings, one for each provider.
Query Store Tuning
Because tracking metrics like this can be expensive, SQL Server allows you to tune the Query Store. There are many factors you can adjust, they include the size of the aggregate window in minutes (INTERVAL_LENGTH_MINUTES), the max space allocated to the query store in MB (MAX_STORAGE_SIZE_MB), the maximum number of execution plans to store for each query (MAX_PLANS_PER_QUERY) and so on. You can also tell the Query Store to only record queries that meet certain criteria. SQL Server allows you to tune these options through the ALTER DATABASE statement.
For more details, you can visit the page Monitoring Performance by using the Query Store.
In the next article I will talk about performance issues related to the query plan choice change and how the Query Store can help us to identify queries that have become slower!
Stay connected here!