Member-only story
GENERATIVE AI
Fine Tuning LLMs on a Single Consumer Graphic Card
Learnings from fine-tuning a large language model on a single consumer GPU
Background
When we think about Large Language Models or any other generative models, the first hardware that comes to mind is GPU. Without GPUs, many advancements in Generative AI, machine learning, deep learning, and data science would’ve been impossible. If 15 years ago, gamers were enthusiastic about the latest GPU technologies, today data scientists and machine learning engineers join them and pursue the news in this field too. Although usually gamers and ML users are looking at two different kinds of GPUs and graphic cards.
Gaming users usually use consumer graphic cards (such as NVIDIA GeForce RTX Series GPUs), while ML and AI developers usually follow news about Data Center and Cloud Computing GPUs (such as V100, A100, or H100). Gaming graphic cards usually have much less GPU memory (at most 24GB as of January 2024) compared to Data Center GPUs (in the range of 40GB to 80GB usually). Also, their price is another significant difference. While most consumer graphic cards could be up to $3000, most Data Center graphic cards start from that price and can go tens of thousands of dollars easily.

