TDS Archive

An archive of data science, data analytics, data engineering, machine learning, and artificial intelligence writing from the former Towards Data Science Medium publication.

Member-only story

Multiscale Financial Signal Processing

5 min readMay 7, 2021

--

“Everything is Energy” — Photo by Darius Bashar on Unsplash

Market observations and empirical studies have shown that asset prices are often driven by multiscale factors, ranging from long-term economic cycles to rapid fluctuations in the short term. This suggests that financial time series are potentially embedded with different timescales.

On the other hand, nonstationary and behaviors and nonlinear dynamics are often observed in financial time series. These characteristics can hardly be captured by linear models and call for an adaptive and nonlinear approach for analysis. For decades, methods based on short-time Fourier transform have been developed and applied to nonstationary time series, but there are still challenges in capturing nonlinear dynamics, and the often prescribed assumptions make the methods not fully adaptive. This gives rise to the need for an adaptive and nonlinear approach for analysis.

Hilbert-Huang Transform (HHT)

One alternative approach in adaptive time series analysis is the Hilbert-Huang transform (HHT). The HHT method can decompose any time series into oscillating components with nonstationary amplitudes and frequencies using empirical mode decomposition (EMD). This fully adaptive method provides a multiscale…

--

--

TDS Archive
TDS Archive

Published in TDS Archive

An archive of data science, data analytics, data engineering, machine learning, and artificial intelligence writing from the former Towards Data Science Medium publication.

Tim Leung, Ph.D.
Tim Leung, Ph.D.

Written by Tim Leung, Ph.D.

Endowed Chair Professor of Applied Math, Director of the Computational Finance & Risk Management (CFRM) Program at University of Washington in Seattle