Deepnote Emerges from Stealth: With YC, Index, and Accel Leading Our Seed Round

Jakub Jurových
Feb 6, 2020 · 3 min read

We’ve been working behind the scenes for the past year. Today, we’re excited to announce that we raised $3.8M from YC, Index and Accel to build a new kind of data science notebook. Here’s our story.

At Deepnote, we are building a data science platform where data scientists can collaborate in real time and solve the most difficult AI and ML problems. We believe the future of data science is collaborative, supported by powerful tools specifically designed for data exploration and model prototyping.

Right now, as data scientists, we have to rely on the tools inherited from the software engineering world to solve the problems we are working on. But the data science workflow is fundamentally different. We work with large datasets, run hundreds of experiments, use powerful GPUs. We work in teams, we share our findings with others. We need to collaborate.

The tools we use today were not built for this purpose. Even as the number of data scientists grows rapidly each year, there isn’t a tool which is collaborative at heart, takes care of the infrastructure and scales with you as the complexity of your data science projects grows. That’s why we’re building one. We are building a notebook that lets you focus on your work. We are building a notebook that makes you a better data scientist.

How we got here

As data scientists and software engineers, we started to notice the discrepancy between the level of tools available to software engineers and data scientists, but also between the quality of data science tooling available to employees of the giants like Google, Amazon, Facebook or Netflix, and between what is available to everyone else. It’s not just better resources what’s keeping these companies ahead — it’s better tooling, too.

We started Deepnote at the beginning of 2019. Building on top of the great ideas behind Jupyter, we put together our own experiences from companies like Two Sigma, Palantir, Mozilla, Skyscanner, or Google, to bring the state-of-the-art tools to every data scientist in the world.

Deepnote is an enhanced, collaborative and Jupyter-compatible cloud-based notebook. Now, one year later, thousands of users and the biggest names in the data science community are already using Deepnote.

Peter Norvig, Director of Research at Google is using Deepnote to give wide audience access to his personal projects on his github page. And he’s not the only one — in fact, if you go to pretty much any popular repo with Jupyter Notebooks on Github, chances are you will find links to Deepnote in there. Students use Deepnote for their coursework, authors use Deepnote to publish interactive exercises from books on machine learning. Open source developers use Deepnote to publish their computer vision libraries online.

Data scientists love to share their work with others. We’re making it easy for them.

Our investors

We’re excited to partner with Accel and Index as the lead investors of our seed round, along with Y Combinator and Credo Ventures. In addition, we are joined by some of our friends Greg Brockman (OpenAI), Dylan Field (Figma), Elad Gil, Naval Ravikant, Daniel Gross, Lachy Groom and others.

What lies ahead

This is the beginning.

We understand the needs of a data scientist or a machine learning expert are different to those of a software engineer, and we want to bring the ideas found in the best software engineering tooling to data science while preserving the unique workflow that data science has.

A data science project is not just the code itself, it’s the combination of code, data and execution environment. Notebooks represent a new kind of computational platform. An interactive document, powerful enough to solve the most difficult problems and collaborative enough to share your findings with others. The best data science notebook would allow you to reproduce your findings, make it easy for you to version your models and make you a better data scientist by allowing you to focus on what matters.

This is the notebook we are building.

Join us if you want to be part of this story.


A data science notebook you’ll love to use

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store