Игры жизни Джона Конвея

Тема: Наука

Eggheado
Eggheado: Science

--

Хотите получать интересные статьи на email каждое утро и расширять кругозор? Присоединяйтесь к Eggheado!

Игра «Жизнь» (англ. Conway’s Game of Life) — клеточный автомат, придуманный английским математиком Джоном Конвеем в 1970 году.

Игра Конвея «Жизнь» вызвала огромный интерес у ученых, занимающихся разработкой проблем, связанных с использованием компьютеров. Поэтому остановимся на некоторых основных фактах развития «теории клеточных автоматов» — области науки, занимающейся изучением игр, аналогичных конвеевской «Жизни».

История

Всё началось с 1950 года, когда Джон фон Нейман поставил перед собой задачу доказать возможность существования самовоспроизводящихся автоматов. Если такую машину снабдить надлежащими инструкциями, она построит точную копию самой себя. В свою очередь две машины («мама» и «дочь») смогут построить ещё две; четыре машины построят четыре и т. д.

Джон фон Нейман

Фон Нейман впервые доказал возможность существования таких машин с помощью «кинематических» моделей машины, способной передвигаться по складу запасных частей, отбирать необходимые детали и собирать новые машины, как две капли воды похожие на неё. Позднее, воспользовавшись идеей, высказанной его другом Станиславом Уламом, фон Нейман дал более изящное и абстрактное доказательство возможности существования самовоспроизводящихся машин.

Новое доказательство фон Неймана существенно использовало понятие «однородного клеточного пространства», эквивалентного бесконечной шахматной доске. Каждая клетка такого пространства может находиться в любом, но конечном числе «состояний», в том числе в состоянии «покоя» (называемом также пустым, или нулевым, состоянием).

На состояние любой клетки оказывает влияние конечное число соседних клеток. Во времени состояния пространства изменяются дискретно, в соответствии с «правилами перехода», которые необходимо применять одновременно ко всем клеткам. Клетки соответствуют основным частям автомата с конечным числом состояний, а конфигурация из «живых» клеток — идеализированной модели автомата.

Именно в таком клеточном пространстве и развёртывается действие придуманной Конвеем игры «Жизнь». Соседними для каждой клетки в «Жизни» считаются восемь непосредственно окружающих её клеток. Клетка может находиться в двух состояниях (либо на ней стоит фишка, либо клетка пуста). Правила перехода определяются генетическими законами Конвея (рождение, гибель и выживание).

Фон Нейман, применяя правила перехода к пространству, каждая клетка (или ячейка) которого могла находиться в 29 состояниях и имела четыре соседние клетки (примыкающие к данной по вертикали и горизонтали), доказал существование самовоспроизводящейся конфигурации, состоящей примерно из 200 000 клеток.

Причина столь чудовищных размеров конфигурации объяснялась тем, что фон Нейман намеревался применить своё доказательство к реальным автоматам и специально подобрал клеточное пространство, способное имитировать машину Тьюринга — идеальный автомат, названный в честь изобретателя, английского математика А. М. Тьюринга, и способный производить любые вычисления.

Машина Тьюринга

«Погрузив» универсальную машину Тьюринга в созданную им конфигурацию, фон Нейман получил возможность создать «универсальный конструктор», способный построить любую конфигурацию в пустых клетках пространства, в том числе и точную копию самого себя. За время, прошедшее после смерти фон Неймана (последовавшей в 1957 году), предложенное им доказательство существования самовоспроизводящейся системы (речь идет именно о «чистом» доказательстве существования, а не о построении используемой в доказательстве фон Неймана конфигурации) удалось значительно упростить. Рекорд по простоте установило доказательство, найденное выпускником инженерного факультета Массачусетского технологического института Эдвином Р. Бэнксом. В нём используются «ячейки», которые могут находиться лишь в 4 состояниях.

Самовоспроизведения в тривиальном смысле — без использования конфигураций, включающих в себя машину Тьюринга, — добиться легко. Удивительно простой пример «тривиальной» самовоспроизводящейся системы предложил около 10 лет назад Эдвард Фредкин. В этой системе ячейки могут находиться лишь в двух состояниях, каждая из них, как и в примере фон Неймана, имеет четырёх соседей.

Происхождение

Джон Конвей заинтересовался проблемой, предложенной в 1940-х годах известным математиком Джоном фон Нейманом, который пытался создать гипотетическую машину, которая может воспроизводить сама себя. Джону фон Нейману удалось создать математическую модель такой машины с очень сложными правилами. Конвей попытался упростить идеи, предложенные Нейманом, и в конце концов ему удалось создать правила, которые стали правилами игры «Жизнь».

Впервые описание этой игры было опубликовано в октябрьском (1970 год) выпуске журнала Scientific American, в рубрике «Математические игры» Мартина Гарднера.

Правила игры Конвея

  • Место действия игры — «вселенная» — это размеченная на клетки поверхность или плоскость — безграничная, ограниченная, или замкнутая (в пределе — бесконечная плоскость).
  • Каждая клетка на этой поверхности может находиться в двух состояниях: быть «живой» или быть «мёртвой» (пустой). Клетка имеет восемь соседей (окружающих клеток).
  • Распределение живых клеток в начале игры называется первым поколением. Каждое следующее поколение рассчитывается на основе предыдущего по таким правилам:
    в пустой (мёртвой) клетке, рядом с которой ровно три живые клетки, зарождается жизнь; если у живой клетки есть две или три живые соседки, то эта клетка продолжает жить; в противном случае (если соседей меньше двух или больше трёх) клетка умирает («от одиночества» или «от перенаселённости»).
  • Игра прекращается, если на поле не останется ни одной «живой» клетки, если при очередном шаге ни одна из клеток не меняет своего состояния (складывается стабильная конфигурация) или если конфигурация на очередном шаге в точности (без сдвигов и поворотов) повторит себя же на одном из более ранних шагов (складывается периодическая конфигурация).

Эти простые правила приводят к огромному разнообразию форм, которые могут возникнуть в игре.

Игрок не принимает прямого участия в игре, а лишь расставляет или генерирует начальную конфигурацию «живых» клеток, которые затем взаимодействуют согласно правилам уже без его участия (он является наблюдателем).

Фигуры

Вскоре после опубликования правил, было обнаружено несколько интересных шаблонов (вариантов расстановки живых клеток в первом поколении), в частности: r-пентамино и планер (glider).

Планер

Некоторые такие фигуры остаются неизменными во всех последующих поколениях, состояние других периодически повторяется, в некоторых случаях со смещением всей фигуры. Существует фигура (Diehard) всего из семи живых клеток, потомки которой существуют в течение 130 поколений, а затем исчезают.

Конвей первоначально предположил, что никакая начальная комбинация не может привести к неограниченному размножению и предложил премию в 50 долларов тому, кто докажет или опровергнет эту гипотезу. Приз был получен группой из Массачусетского технологического института, придумавшей неподвижную повторяющуюся фигуру, которая периодически создавала движущиеся «планеры». Таким образом, количество живых клеток могло расти неограниченно. Затем были найдены движущиеся фигуры, оставляющие за собой «мусор» из других фигур.

Планерное ружье Госпера — первая бесконечно растущая фигура.

Планерное ружье Госпера

Влияние на развитие наук

Хотя игра состоит всего из двух простых правил, тем не менее она более сорока лет привлекает пристальное внимание учёных. Игра «Жизнь» и ее модификации повлияла (в ряде случаев взаимно) на многие разделы таких точных наук как математика, информатика, физика.

Это, в частности:

  • Теория автоматов
  • Теория алгоритмов
  • Теория игр и математическое программирование
  • Алгебра и теория чисел
  • Теория вероятностей и математическая статистика
  • Комбинаторика и теория графов
  • Фрактальная геометрия
  • Вычислительная математика
  • Теория принятия решений
  • Математическое моделирование.

Кроме того, многие закономерности, обнаруженные в игре, имеют свои аналогии в других, подчас совершенно «нематематических» дисциплинах.

Вот список наук, теории которых имеют интересные точки соприкосновения с феноменами «Жизни»:

  • Кибернетика. Сама игра является удачной попыткой Конвея доказать существование простых самовоспроизводящихся систем.
  • Биология. Внешнее сходство с развитием популяций примитивных организмов впечатляет.
  • Физиология. Рождение и смерть клеток аналогичны процессу возникновения и исчезновения нейронных импульсов, которые и формируют процесс мышления. А также аналогичны созданию импульсов в нервной системе многоклеточных организмов.
  • Астрономия. Эволюции некоторых сложных колоний удивительным образом схематично повторяют этапы развития спиралевидных галактик.
  • Физика твёрдого тела. Теория автоматов вообще и игра «Жизнь» в частности используются для анализа «явлений переноса» — диффузии, вязкости итеплопроводности.
  • Квантовая физика. Поведение «жизненных» ячеек (рождение новых и взаимное уничтожение) во многом напоминают процессы, происходящие при столкновении элементарных частиц.
  • Наномеханика. Стационарные и пульсирующие колонии являются показательным примером простейших устройств, созданных на основе нанотехнологий.
  • Электротехника. Правила игры используются для моделирования самовосстанавливающихся электрических цепей.
  • Социология. Процессы доминации, вытеснения, поглощения, сосуществования, слияния и уничтожения популяций во многих аспектах схожи с явлениями, происходящими при взаимодействии больших, средних и малых социальных групп.
  • Философия. Приведённый список примеров снова наводит на мысль, что всё во Вселенной развивается по одним и тем же нескольким фундаментальным законам, пока ещё не познанным человеком.

Возможно, эта игра связана и с другими научными явлениями, в том числе и с теми, о которых современной науке пока неизвестно. Также возможно, что не открытые на сегодня законы Природы и Общества станут более понятными благодаря «Жизни» и ее модификациям.

Интересные факты

  • Фигура «планер» (glider) в 2003 году была предложена в качестве эмблемы хакеров.
  • Первое русскоязычное упоминание Game of Life относится к 1971 г. В переводе журнала «Наука и Жизнь» известна как «Эволюция».

Если вы хотите получать больше статей, подобно этой, то кликните Recommend ниже.

Eggheado — это познавательная статья к завтраку.

--

--

Eggheado
Eggheado: Science

Eggheado — это мини-курсы, которые состоят из познавательных 5-минутных статей и каждое утро доставляются в ваш почтовый ящик. Подробней тут — eggheado.com