Farming (r)evolution

Agricultural robots bring precision to farms of the future

The Bonirob agribot uses video- and laser-based positioning as well as satellite navigation to find its way around the fields and with cameras and computer-based image analysis, it recognizes and classifies plants (Bosch Deepfield Robotics)

The technology for driverless agricultural machinery and 24‑hour autonomous operations such as seeding, planting and tillage is at hand, and spreading fast.

Leading European and US agricultural machinery companies have launched prototypes of fully autonomous cabless and driverless tractors fitted with GPS‑guided steering and sensors including radar, laser and Light Imaging, Detection and Ranging (Lidar). The raw sensor data can be used to create an accurate terrain map of both indoor and outdoor environments, while onboard video cameras enhance safety by detecting and avoiding stationary or moving obstacles. Autonomous tractors can also work with other manned machinery.

Large tractors are efficient on larger farms, but smaller electric‑powered mobile robots offer much better opportunities for improving productivity on small and medium‑sized farms according to Professor Simon Blackmore, Director of the National Centre for Precision Farming (NCPF) and Head of Engineering at Harper Adams University in the UK.

“In 20 years, robotics will have revolutionized agriculture”, he predicts, noting that it’s not technology that’s slowing adoption, but rather regulations, high sensor costs and a lack of trust on the part of farmers.

Farming (r)evolution

Agricultural robots bring precision to farms of the future

By Peter Feuilherade

http://robohub.org/

The market for agricultural robots has the opportunity for significant expansion: the farming world needs to increase global production whilst it also faces challenges such as reduced availability and the rising costs of farm labour.

Many advances in electric self‑driving car technology and robotics are transferring across to industrial and commercial vehicles, which account for some 60% of the value of the overall electric vehicle market.

In agriculture, the widening use over the next decade of autonomous hybrid or fully electric tractors, robotic machinery and drones could increase farm efficiency and revolutionize how food is produced.

Although some of the technology in farming robots is similar to that of autonomous vehicles, it differs in that operations such as planting seeds, picking vegetables or fruits and localized application of pesticides have individual sensing, manipulation and processing requirements.

Factors promoting the take‑up of agricultural robotics include the promise of increased productivity and efficiency, falling costs of self‑driving technology, reduced availability and rising costs of farm labour and the need to produce more food for a growing global population while crop yields fall in many regions as a result of climate change.

Tractors in transition to electric propulsion

Self‑driving kits, allowing tractors with GPS assistance to follow pre‑programmed routes on large farms, became available some 20 years ago. Nowadays most high‑end tractors are equipped with driverless technology, which is also compatible with combine harvesters. Using GPS, operators can guide tractors and combines to within 30 cm of any plotted location, resulting in more rows in fields and increasing productivity per acre/hectare. More than 300 000 tractors equipped with auto‑steer or tractor guidance were sold in 2016, according to market research company IDTechEx.

Leading European and US agricultural machinery companies have launched prototypes of fully autonomous cabless and driverless tractors fitted with GPS‑guided steering and sensors including radar, laser and Light Imaging, Detection and Ranging (Lidar). The raw sensor data can be used to create an accurate terrain map of both indoor and outdoor environments, while onboard video cameras enhance safety by detecting and avoiding stationary or moving obstacles. Autonomous tractors can also work with other manned machinery.

The standardization work of numerous IEC Technical Committee (TCs) and Subcommittees (SCs) contributes significantly to the performance of cameras and sensing technology used in driverless tractors and other autonomous agricultural machinery. International Standards prepared by IEC TC 47: Semiconductor devices, IEC SC 47E: Discrete semiconductor devices, and IEC SC 47F: Microelectromechanical systems, enable manufacturers to build more reliable and efficient sensors and microelectromechanical systems (MEMS). IEC TC 56: Dependability, covers the reliability of electronic components and equipment.

John Deere has unveiled its new project, the first fully-electric tractor SESAM, or Sustainable Energy Supply for Agricultural Machinery, at the Paris International Agribusiness Show in early 2017 (Photo: John Deere)

The technology for driverless agricultural machinery will allow 24‑hour autonomous operations such as seeding, planting and tillage to take place. It can enable farmers to address concerns about shortages of agricultural labour, while also increasing productivity and efficiency. IDTechEx notes that delays in the large‑scale market introduction of unmanned autonomous tractors are attributable primarily to regulation, high sensor costs and a lack of trust on the part of farmers, not too technical issues.

Tractors are also making the transition to electric propulsion. A prototype fully‑electric tractor unveiled by a leading US manufacturer earlier this year is equipped with two independent 150 kW electric motors for a total power output of up to 300 kW (402 hp). It is powered by a 130 kWh battery pack and can run for four hours on a three-hour charge.

In the transitional stage to fully‑electric tractors, kits are available to transform diesel‑engine machines into diesel‑electric tractors fitted with generators. In addition, a drivetrain that replaces the transmission, differential and axles with four electric wheel motors provides precise control of the drive tyres.

The range of commercially-available electrically‑powered agricultural vehicles extends beyond tractors to self‑propelled feed mixers and wheeled loaders, all with zero emissions, minimal noise and smooth driving characteristics.

Several IEC TCs and SCs draw up International Standards for the electronic systems, sensors, motors and batteries used in the driverless technology found in electric‑powered autonomous vehicles.

More

A single golf clap? Or a long standing ovation?

By clapping more or less, you can signal to us which stories really stand out.