A guide to programming languages for coding in class

James R. Curran
Grok Learning
Published in
9 min readApr 24, 2017

This article first appeared in Teacher, published by ACER. Reproduced with kind permission. Visit www.teachermagazine.com.au for more.

Examples of different programming languages.

Since 1954, when IBM’s John Backus invented the first widely-used programming language, FORTRAN (FORmula TRANslation) for scientific and engineering calculations, many weird and wonderful programming languages have been developed for coding.

As a teacher, how do you choose which programming language is right for you and your students? In this article, we’ll discuss which programming languages are suitable for each band of the Australian Curriculum: Digital Technologies and for extra-curricular computing activities.

But first, what is a programming language?

A programming language is a language for describing instructions that a computer can follow to solve a problem. Like natural languages, such as English or Mandarin, programming languages have a grammar (or syntax) that programmers must learn. Unlike humans, computers cannot understand a program if the syntax is even slightly incorrect. They will complain with a syntax error.

Compared with our brains, the CPU in a computer can only perform simple instructions, but it can do them very fast. For example, a CPU can add two whole numbers together billions of times per second, but it cannot recognise a handwritten digit. To recognising handwriting, programmers must break the task down into many simple instructions for the computer to follow.

Coding in the Australian Curriculum

The Australian Curriculum: Digital Technologies (AC:DT) mandates that all students learn to write programs from Years 3–4 through to Years 7–8, with an elective subject for Years 9–10.

In 3–4, students should learn to implement simple digital solutions as visual programs with algorithms involving branching (decisions) and user input (ACTDIP011) and in 5–6 use iteration (repetition) (ACTDIP020) in their programs. Put simply, students should be able to write programs that take and display information, perform calculations, make decisions, and repeat steps.

In 7–8, students must also implement and modify programs with user interfaces involving branching, iteration and functions in a general-purpose programming language (ACTDIP030) and in 9–10 implement modular programs, applying selected algorithms and data structures including using an object-oriented programming language (ACTDIP041).

Nearly all popular languages provide the bolded black concepts above. The curriculum makes a key distinction between visual programming (in Year 3–6), general-purpose programming (in Year 7–8), and object-oriented programming (in Year 9–10).

Let’s compare programming languages with a simple task: asking the user for their name (user input/interface), storing their name in a variable, and displaying the message Hello, followed by their name. These are concepts common to the programming content descriptions in AC:DT.

Visual programming

Visual programming involves dragging and dropping instruction blocks together to form a program in a graphical development environment. The advantages of visual programming are:

  • students don’t need to learn syntax and cannot create syntax errors;
  • students can see what blocks (instructions) are available;
  • blocks often hide complex logic or operations in a single block.

Scratch and Blockly are popular visual programming languages. They have a similar style of blocks, but their functionality and environments are very different. Other visual environments include Alice and Lego Mindstorms.

While visual programming is excellent for beginners, it is too slow and cumbersome for writing substantial programs. Visual environments are usually limited in their functionality, making data analysis difficult and restricting the kinds of problems that can be solved.

Blockly (Year 3–6)

Blockly is the visual programming language used by several systems, including Code.org, Made with Code, MIT App Inventor, and our own Grok Learning. Each system uses a different set of blocks but they use similar blocks for most coding concepts, including branching and iteration. Each system runs on any modern browser, for desktop and tablets, including iPads.

The example below is from Grok Learning. In this program, the green ask block prompts the user for their name with the message Enter your name? and then waits for the user to type in their name. The user’s name is then stored in the variable called name by the grey set variable block. Finally, the purple print block prints Hello followed by the name stored in the variable.

A small program in the Blockly language.

Depending on the system, the input and output can be text-based, graphical, or another device (such as an Android device or a BBC micro:bit). Many systems provide markers that automatically check whether the student’s code is correct.

Scratch (Year 3–6)

Scratch is a graphical environment for developing interactive games and multimedia developed at MIT. It runs on desktop or tablet browsers that can run Flash. Unfortunately, this excludes iPads. A version for younger kids, called Scratch Junior, is available for the iPad or Android tablets. Students can store and share their projects online.

Scratch is event based (the code runs in response to a user action, here a click event on the green flag). Events are used in interactive programs, such as graphical user interfaces, websites and games, to respond to user input. The output changes the properties of one or more characters (sprites), such as their position, orientation and size; or background images and sound.

Students find the interactive graphical programs they develop very motivating, and it appeals to a wide range and ability of students. Scratch is highly recommended as a first programming language for Year 3–4 and less experienced 5–6 students.

A small program in the Scratch language.

In the program above, Scratch’s orange cat prompts the user for the name using a speech bubble and when they enter the name, it is joined with Hello and then displayed for 10 seconds.

The Scratch cat asking for user input.

General-purpose programming

By general-purpose programming languages, AC:DT means a text (versus visual) programming language that can be used to solve a wide range of problems. Students should code in a language they can use to solve problems, analyse data, and enhance their learning in future study and work.

General-purpose languages include C/C++, C#, Java, Javascript, Python, Ruby, Swift, and Visual Basic. Not all of these languages are well suited to teaching at school, especially for beginners.

Ideally, we want a language with clean and simple:

  • syntax and error messages;
  • programming concepts and documentation;
  • libraries for a wide range of programming tasks;

that is available across different operating systems and devices. Each language offers trade-offs for a teaching context and/or planned projects and some languages are designed for particular tasks.

For example, C/C++ is used for low-level system development, such as Arduino programming; Javascript is mostly used for coding interactive websites; and C#/Visual Basic and Swift are largely limited to developing applications for Microsoft and Apple platforms respectively.

Python (Year 7–10, advanced Year 5–6s)

Python is powerful general-purpose programming language, that is very popular in school and university programming courses, and is also widely used in industry and academia. The syntax is very simple and consistent, it enforces good habits (such as indentation), and the standard and external libraries enable a very wide range of problems to be solved.

Because of its simplicity, Python has often been called executable pseudo-code, that is, as a programming language, it is very readable and (fairly) close to English.

In the Python program below, the input function asks the user for their name with the prompt message. The returned name is stored in the name variable, and then Hello and the name are displayed by the print function. This program is identical to the Blockly program above:

A simple Python program.

In our Grok Learning system, students can see the Python code that corresponds to their Blockly program, which helps them see the relationship between visual and text programming.

Python can be used for embedded/robotics development on the BBC micro:bit. Unfortunately, Python does not have good support for developing graphical user interfaces, and PyGame, while fairly popular, is a difficult framework for writing games.

Ruby (Year 7–10)

Ruby is similar to Python in many ways, but the syntax is more succinct and esoteric. While this is great for professional programmers, it is harder for new programmers. For example, in most languages, you use parentheses to run (or call) a function, such as print(‘Hello’) in the Python snippet above. But in our Ruby example below, both gets and chomp are function calls, but the parentheses are optional (which is faster for experts, harder to understand for beginners):

A simple Ruby program.

Use of Ruby has largely been driven by the popular Ruby on Rails web framework, and while it is a general purpose language, Ruby is much less popular than Python outside of web applications.

Java (only Year 9–10, if at all)

Java is an general-purpose programming language that is widely used in industry, from Android app development up to enterprise servers and website backends. It is also a complex language to learn with an enormous standard library and heavyweight development environment.

A simple Java program.

While teaching a language that is used in industry has some merit, we strongly discourage the teaching of Java (or for that matter C++, C#, or Swift) in school, because the languages are too large and difficult to master as first programming languages. Notice how much more code is required to solve the same problem as 2–3 lines of Python and Ruby.

Javascript (Year 7–10)

Javascript is the programming language understood by web browsers, and so nearly all interactive websites are written in Javascript. Despite the name, it is a very different language to Java. Since Javascript is focused on browsers, it doesn’t have the simple input/output functions of the other languages. Instead, Javascript code modifies and generates HTML/CSS, which changes the look and behaviour of a website as the user interacts with it:

A simple Javascript program.

Javascript programming is largely event-driven, like Scratch, which can make it difficult to follow. In the example above, the main function runs when the user clicks the Run button, asking the user for their name in a pop-up dialog box, and then updating the contents of the paragraph to be Hello followed by the name.

Summary

For primary school teachers, the choice is quite clear. Scratch is very popular as a first programming language with good reason. It inspires a wide range of students with opportunities for creative programming in many different ways. Blockly activities provide a more systematic exploration of the programming concepts and usually include some form of automated marking to confirm the student’s code is correct.

For secondary school teachers, there are many languages to choose from. We believe Python is an excellent all-round language — powerful and flexible, yet accessible for beginners. Its one weakness is that creating graphical user interfaces or games in Python is not very easy, in which case pairing Python with Javascript in a later year gives your students the best of both worlds.

Happy coding!

Associate Professor James Curran is the Director of the Australian Computing Academy, University of Sydney. He runs the National Computer Science School, the largest CS outreach program in Australia. James is a co-founder of Grok Learning, a learn-to-code edtech startup. He was a writer on the Australian Curriculum: Digital Technologies. James has won University and national awards for teaching excellence, an AIIA iAward, and an Engineering Australia Excellence award. In 2014, he was named ICT Leader of the Year by ICTENSW and ACCE.

--

--