How could airport screening be improved?
Disease screening at airports misses many cases, but tailoring the process to each disease outbreak could make it more effective.
International air travel has contributed to the spread of several recent disease epidemics. For example, travelers infected with severe acute respiratory syndrome (or SARS) in 2003 carried the disease around globe. One infected air traveler can carry a disease to a new continent: in 2014, a man infected with Ebola in West Africa flew to the United States and infected two healthcare workers in Dallas during treatment.
Efforts to prevent the spread of SARS, Ebola and other disease outbreaks have included screening air passengers for infection prior to boarding, or immediately after arrival. In these situations, infrared thermometers are often used to check for symptoms of fever and passengers may be asked to fill out questionnaires to assess their risk of exposure to the disease.
However, the effectiveness of these airport screenings is questionable. Thousands of air travelers have been screened during several recent disease outbreaks, but few disease cases were detected. There are many reasons why an infected individual may be missed in airport screens. Passengers who have recently been infected may not yet display any symptoms and some passengers may be able to hide a fever or other symptoms by taking medication. Even if an individual has a fever, infrared thermometers will only detect it about 70% of the time. Also, screening questionnaires may miss passengers who are infected if they lie about any possible exposure to the disease.
Katelyn Gostic, Adam Kucharski, and James Lloyd-Smith created a mathematical model to help assess how useful airport screening is for detecting cases of disease caused by the SARS coronavirus, Ebola, influenza H1N1 and several other viruses. The model reveals that the effectiveness of airport screening depends on several factors including: how long it takes for symptoms to develop after infection (the incubation period), how much is known about the virus and how it spreads, and whether the epidemic is still growing in size or is starting to slow down.
For influenza H1N1 and other viruses with short incubation periods, fever screening is the most successful method to detect cases throughout the epidemic. However, for viruses with long incubation periods — such as Ebola — questionnaires are more useful in the early stages of an epidemic when the number of cases is rapidly rising. Fever screening becomes more useful later in the epidemic when new cases start to fall because the people who are infected are more likely to be displaying symptoms.
Even so, Gostic and co-workers point out that in all of these scenarios airport screening will still miss many infected passengers. Thus, a challenge for future outbreaks will be to identify situations in which screening is worthwhile, and obtain better measurements of the factors that influence detection rates.
To find out more
Read the eLife research paper on which this eLife Digest is based: “Effectiveness of traveller screening for emerging pathogens is shaped by epidemiology and natural history of infection” (February 19, 2015).
eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.