Meccus pallidipennis, one of the bugs that can transmit Chagas disease. Image credit: Pavel Kirillov (CC BY-SA 2.0)

Modelling zoonoses

Researchers develop a new mathematical model to help guide the public-health management of Chagas disease.

eLife
Published in
3 min readAug 13, 2018

--

Many infectious diseases are contained within a species, so animals from other species are not at risk of catching them. But some diseases — known as zoonoses — can spread between animals and humans. Zoonoses are often transmitted from one host to the next by insects that feed on both animals and humans.

Many well-developed mathematical models exist to understand how infectious diseases are transmitted solely among humans. But modelling how zoonoses spread among all of their hosts is much more difficult. This is because in many cases, the disease can be transmitted in multiple ways — by a contaminated food source or blood-feeding infected insects, or through both wild and domestic animals, complicating the picture further.

To identify what control strategies would be more efficient for reducing the transmission of parasites that can infect multiple host species, Stella et al. created a new mathematical model called the ‘ecomultiplex framework’. This model was used to evaluate the complex transmission of Chagas disease, a tropical disease that can be lethal. It combined both ecology (the environment of the Chagas disease parasite) and epidemiology (the characteristics and progress of the disease) to model how the parasites spread among wild animals. By simulating a real-life scenario, Stella et al. were able to identify which host species were most affected, and to test which control strategies would be the most effective in a given environment. The model also revealed that some species may reduce the transmission of the parasite, while others might amplify it, depending on how they interact with other mammals or insects.

The findings will help guide the public-health management of Chagas disease to control transmission more effectively and reduce disease incidence in humans. Besides Chagas disease, many other life-threatening diseases, such as malaria, Leishmaniasis, plague and Lyme disease, are also zoonoses transmitted by multiple ways. The ecomultiplex framework could be of use to ecologists studying these diseases and developing more effective ways to control them.

To find out more

Read the eLife research paper on which this eLife digest is based:

eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.
This text was reused under the terms of a Creative Commons Attribution 4.0 International License.

--

--