Deploying Kubernetes applications with Helm

In our first Kubernetes blog post, we discussed what Kubernetes has to offer and why you might want to use it.

To go with that blog, we started a series of walk-throughs on github on how to build an application using Kubernetes.

We’ve just released the latest walk-through in this series, which discusses deploying an application using Helm. This post is going to talk about why we chose to use Helm. It references the previous walk-throughs in the Kubernetes series, so if you haven’t read them yet it might not make sense. (Click here to check them out!)


Motivation

In the first four episodes in our Kubernetes series, we deployed our application using kubectl.

This works, but it’s painful because we have to manually run a command for each resource in our Kubernetes application. This is prone to error, because we might forget to deploy one resource, or introduce a typo when writing our kubectl commands. As we add more parts to our application, the probability of these problems occurring increases.

You could avoid this by writing an automation script, but if you change the filenames or paths of your Kubernetes resources, then you need to update the script too.

The real problem is that we have to remember exactly how to deploy the application step by step. Our “application” (i.e, all of our Kubernetes resources packaged together) is something kubectl has no idea about.

# Deploying an application to a cluster using kubectl...
> kubectl create -f ./ks/web-api-deployment.yaml
> kubectl create -f ./ks/web-api-service.yaml
> kubectl create -f ./ks/nginx-deployment.yaml
> kubectl create -f ./ks/nginx-service.yaml
> kubectl create -f ./ks/worker-deployment-1.yaml
> kubectl create -f ./ks/worker-deployment-2.yaml
> kubectl create -f ./ks/worker-service.yaml

Note: Although you can point kubectl at a directory, things like rolling back that entire deployment still needs to be managed on a per-resource basis. There’s no model of an entire “application” at this point.

Helm to the rescue

Helm offers a solution to this problem. According to the documentation:

Helm is a tool for managing Kubernetes charts. Charts are packages of pre-configured Kubernetes resources.

A chart is organized as a collection of files inside of a directory.

In other words, Helm allows us to work from the mental model of managing our “application” on our cluster, instead of individual Kubernetes resources via kubectl.

How does it compare?

Let’s think about how we were deploying using the kubectl command line.

Deploying using kubectl

Notice how for each resource, we have to run a manual kubectl command?

Compare that to deploying with helm…

Deploying using helm

We’re able to deploy our entire application by pointing helm at a directory containing all of our Kubernetes resources, using one command line call.

Okay, Helm saves me a few command line calls… so what?

While using helm does save you a bunch of command line calls, one of the big wins is that you now get to work from a mental model of managing an application on a Kubernetes cluster. You now manage the packaged “release”, instead of each resource on its own.

And helm offers more than that, too.

Revision management

Helm keeps track of how many times an application has been deployed on a cluster. You can inspect what revision number you’re currently at, and you can even rollback to previous revisions if necessary. Doing this with kubectl is possible, but it's much more difficult than just running helm rollback <APPLICATION> <REVISION_NUMBER>.

Updates made easy

If you have changes to your application (e.g a new docker image to deploy), all you have to do is the following after updating your resource files:

helm upgrade <release-name> <chart-directory>

Helm does the hard work for you and figures out which bits need to be deployed.

Templates

If you’ve got a value that multiple deployments need to share (for example a port number), then usually you’d just duplicate that value in each deployment definition.

With Helm, you define configuration values in a separate values.yaml file and reference those in other resource files. Helm injects the values at deployment time.

This has the huge benefit of centralising your configuration values. If you update a value, then all resources depending on it get that updated value. No more forgetting to update one resource!

So how do I get started?

You can check out our Kubernetes series on github.com/red-gate/ks.

You can also read the helm documentation.


What’s next?

We’re going to be looking at how we add a database to the cluster. This is interesting because databases are stateful. It’s not ok to kill a database pod, because we’ll lose all the data. We need to persist that data outside of the cluster somehow.

Keep an eye out for the next tutorials. We’ll also be looking into database dev-ops practices for how you can manage schema migrations, backups, and other tasks.


We’re hiring. Are you interested in uncovering product opportunities, building future technology and taking a startup-like approach (without the risk)? Take a look at our Software Engineer — Future Technologies role and read more about what it’s like to work at Redgate in Cambridge, UK.

Ingeniously Simple

How Redgate build ingeniously simple products, from inception to delivery.

Christopher Heppell

Written by

Software Engineer at Redgate Software

Ingeniously Simple

How Redgate build ingeniously simple products, from inception to delivery.

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch
Follow all the topics you care about, and we’ll deliver the best stories for you to your homepage and inbox. Explore
Get unlimited access to the best stories on Medium — and support writers while you’re at it. Just $5/month. Upgrade