Navigating the A.I. and Cognitive Maze

Steven Astorino
Dec 8, 2017 · 5 min read
Pixabay image

If you work in the area of Artificial Intelligence (AI) and Cognitive Computing, you might use buzz words and phrases which to others might be perceived as confusing jargon. This article attempts to explain what these terms mean, how they relate to one other and where they all fit along the AI and cognitive time continuum. I include a glossary of my top 20 useful AI/cognitive terms — and advice on getting started on your AI/cognitive journey.

Machine Learning, Cognitive Computing, Artificial Intelligence

Think of machine learning (ML) as a set of libraries and an execution engine for running a set of algorithms as part of a model to predict one or more outcomes. Each outcome has an associated score indicating the confidence level at which it will occur. Cognitive computing is the ability of computers to simulate human behavior of understanding, reasoning and thought processing. The ultimate goal is to simulate intelligence though a set of software and hardware services to produce better business outcomes. Hence the term “Artificial Intelligence” as in figure #1.

Figure #1 Positioning ML, Cognitive and AI.

From Checkers to Jeopardy

Machine Learning is defined as : a field of computer science that gives computers the ability to learn without being explicitly programmed. Arthur Samuel, an IBMer, known for his groundbreaking work in computer checkers in 1959 (figure #2) developed a scoring function based on the position of the board at any given time which measured the chance of each side winning taking into account many game factors. In what he called rote learning, the program remembered every position it had already seen, along with the terminal value of the “reward function” (reinforcement learning).

Figure 2 Arthur Samuel of IBM demonstrating computer checkers game, 1959

Machine learning grew out of the quest for AI. As an academic discipline, some researchers were interested in having machines learn from data, approaching the problem with various symbolic methods, as well as what were then termed “neural networks”.

Two important learning concepts to know about:

Around 1957 the “perceptron” was conceived — an algorithm for supervised learning of binary classifiers.

During the “A.I. Winter” of the 1970s and 1980s there was pessimism in the AI community, reflected by the press, followed by severe cutbacks in funding and research. Three years later, the billion-dollar AI industry began to collapse.

During the 1980s “backpropagation” caused a resurgence in ML research followed by a shift to a data-driven approach in the 1990s. Scientists began creating programs for computers to analyze large amounts of data and draw conclusions or “learn” from the results.

By 2010, deep learning was helping ML become integral to many widely used software services and applications. It uses convolutional neural networks, looking at things more deeply — in layers — and has been applied to computer vision, speech recognition, natural language processing, audio recognition, social network filtering, machine translation, bioinformatics and drug design, where it has produced results comparable to and in some cases superior to human experts.

In 2011, “Watson” competed on the Jeopardy! TV game beating and outperforming the top contestants. Its natural language processing, predictive scoring and models were key to its success.

The Impact of Big Data

Big data just means ALL data. Just remember the 3 Vs : Volume, Variety, Velocity. The more data (volume and variety) we have, the more informed our insights should be. Trying to make a decision on limited data or just one dimension can incur risk because we may not have the full picture. Including customer sentiment, product reviews, social media data, etc. should enable greater “understanding” of a situation. Applying AI techniques to all this data should result in smarter business outcomes by considering interrelationships across many different data sources.

Cognitive Computing Comes of Age

Around 2015, there was a convergence of the many facets of ML and Deep Learning mentioned above. Cognitive computing is the ability of computers to simulate human behavior of understanding and thought processing. Open source, improved tools, demand for self-service PayGo analytics, cheap compute power, massive data ingest, scale-out processing and flexible deployment options helped democratize cognitive computing, putting it in reach of the vast majority of the data science community.

Since the Jeopardy! game, AI has been applied across many industries from financial markets to help predict and prevent fraud in real time, to retail to help predict what customers will purchase next, to security and protection to help prevent attacks and crimes, to media to help tailor the viewing experience with targeted advertising and to healthcare to help doctors design cancer treatment plans.

Machine Learning for the Masses

But one thing was missing — making it consumable to the data science community regardless of skill level.

The IBM Data Science Experience (DSX) is a single unifying tool that allows multiple personas to collaborate across the data science lifecycle — from data preparation and ingest to ML model creation and training to deployment and management. DSX is suitable for all skill levels whether you prefer to use Notebooks or an intuitive step-by-step visual interface that applies cognitive techniques to choose the best algorithms for you. This IBM video on DSX provides more information.

Figure #3 A Machine Learning flow with persona involvement.

Summary and Call to Action

Hopefully this article helps readers understand how and when AI appeared and developed over time at a high level, how the different elements of AI, ML and Cognitive relate to each other, as well as explaining some of the key terms we hear mentioned in this exciting industry. So that’s the educational portion of this blog post. Your next step is to try machine learning for yourself by clicking here which will take you to the IBM Data Science Experience.

Steven Astorino,

VP of Development, Private Cloud Platform and z Analytics

IBM Analytics

Twitter @astorino_steven

— — — — — — — — — — — — — — — — — -


My Top 20 ML/AI terms defined and explained:

Inside Machine learning

Deep-dive articles about machine learning and data.

Medium is an open platform where 170 million readers come to find insightful and dynamic thinking. Here, expert and undiscovered voices alike dive into the heart of any topic and bring new ideas to the surface. Learn more

Follow the writers, publications, and topics that matter to you, and you’ll see them on your homepage and in your inbox. Explore

If you have a story to tell, knowledge to share, or a perspective to offer — welcome home. It’s easy and free to post your thinking on any topic. Write on Medium

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store