Jungletronics
Published in

Jungletronics

Pandas DataFrame Advanced

A Complete Notebook Review #PurePythonSeries — Episode #04

INDEX

(1) Series

(2) DataFrame

(3) Conditional Selection

(4) Set and Reset Index

(5) Missing Data

(6) Group By

(7) Cross Section

(8) Pivot Table

(9) Merging, Joining and Concatenation

1 — PANDAS Series — How to Create From…

import pandas as pd

Let’s create four artifacts to see how to create a Series:

First, a List:

labels = ['a','b', 'c']

Second, another List:

my_data = [10,20,30]

Third, a Numpy array:

import numpy as nparr = np.array(my_data)

And Finally, forth, a Dictionary:

dict = {'a':10, 'b':20, 'c':30}

Create Series FROM LISTS

pd.Series(data=my_data, index=labels)a    10
b 20
c 30
dtype: int64

Or, ordering, first data, then labels:

pd.Series(my_data, labels)a    10
b 20
c 30
dtype: int64

Create Series FROM ARRAY

pd.Series(arr)0    10
1 20
2 30
dtype: int32

Or, setting labels:

pd.Series(arr, labels)a    10
b 20
c 30
dtype: int32

Create Series FROM DICTIONARY

This is the easiest and most intuitive way…

pd.Series(dict)a    10
b 20
c 30
dtype: int64

Isn’t it?

2 — PANDAS DATAFRAME — Structure

import matplotlib.pyplot as plt%matplotlib inlineimport pandas as pddf = pd.DataFrame(data, index, columns)df = pd.DataFrame(d   , i    , c)

Create a Pandas’ Dataframe by passing a dictionary:

# Ice Cream Sale - Last 12 Sunny Days
# visit this guide for more info:
table style
d = {'X': [215,325,185,332,406,522,412,614,544,421,445,408], 'Y': [14.2,16.4,11.9,15.2,18.5,22.1,19.4,25.1,23.4,18.1,22.6,17.2]}df = pd.DataFrame(data=d)df.index = ['1°_dia','2°_dia', '3°_dia','4°_dia','5°_dia','6°_dia','7°_dia','8°_dia','9°_dia','10°_dia','11°_dia','12°_dia']df.columns = [ 'Ice_Cream_Sales', 'Temperature_°C']df

3 — Conditional Selection w/ DataFrame

Simple Conditional

df[df>20]
df[df['Temperature_°C']> 20]

Return a subset of DataFrame

There are 2 general formats for GRABBING ELEMENTS from a DataFrame:DOUBLE BRACKET FORMAT
df[line][column]
SINGLE BRACKET FORMAT
df[line,column]
(w/ comma, this is least prone to error!)

Multiple Lines Solution

boolser = df['Temperature_°C']>23 
result = df[boolser]
mycols = ['Temperature_°C', 'Ice_Cream_Sales']
result[mycols]

Single Line (All-in-One)

One_line Conditional Solution:

# Slicing w/ Double Bracket Format# df[][]# df[inequality][[pass_a_list_of_columns]]# df[df[]>0][['','']]df[df['Temperature_°C']>23][['Temperature_°C', 'Ice_Cream_Sales']]

Multiple Conditional Solution:

Python Use AND OR In Multiple Single Conditional

True and TrueTrue

Again:

True and FalseFalse

Once more:

True or TrueTrue

Or:

True or FalseTrue

But here, this Operation will return an ERROR :/

df[(df['Temperature_°C']>23) and (df['Temperature_°C']<26)]

Instead, use AMPERSAND (&) or PIPE( | ) as below:

df[(df['Temperature_°C']>23)  &  (df['Temperature_°C']<26)]
df[(df['Temperature_°C']<14)  |  (df['Temperature_°C']>22)]

4 — SET AND RESET INDEX

Transform the old index into a column:

resetted_df = df.reset_index()resetted_df

Return index column as real index:

resetted_df.set_index('index')

5 — MISSING DATA

Creating DataFrame From Dictionary:

​dict = {'A':[1,2,np.nan],'B':[5, np.nan, np.nan],'C':[1,2,3]}

Creating a DataFrame from dictionary:

df = pd.DataFrame(dict)
df

Note that the First Line (Zero) and the Last Column (C) are Complete!

axis=0 is the default; Returning the First Line ( Zero ):

df.dropna()

Returning the Last Column ( C ):

df.dropna(axis=1)

Returning if the Column has at least 2 elements:

df.dropna(axis=1, thresh=2)

Filling the blank values:

df.fillna(value ='FILL_VALUE')

Filling the blank cells with the MEAN OF COLUMN ‘A’:

df.fillna(value=df['A'].mean())

Letting Pandas sort out how best to fill the table (ffill — fluid fill:)

df.ffill()

6 — GROUP BY

company = ['GOOG', 'GOOG', 'MSTF', 'MSTF', 'FB', 'FB']

More list:

person = ['Sam', 'Charlie', 'Amy', 'Vanessa', 'Carl', 'Sarah']

Once more list:

sales = [200,120,340,124,245,350]

Save an empty DataFrame:

df = pd.DataFrame()

Join it all in the newly created DataFrame:

df['company'] = company
df['person'] = person
df['sales'] = sales
df

Run groupby():

bycompany = df.groupby('company')

Here is the aggregate functions:

bycompany.sum()
Sum
bycompany.std()
Standard Deviation
bycompany.count()
Counting
bycompany.max()
Maximum
bycompany.min()
Minimum
bycompany.describe()
Describing
bycompany.describe().transpose()
Transposing

7 — Multilevel DataFrame — CROSS SECTION

Let’s create a multilevel DataFrame:

outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2']
inside = [1,2,3,1,2,3]
hier_index = list(zip(outside, inside))
hier_index = pd.MultiIndex.from_tuples(hier_index)

Create a Multilevel DataFrame:

df = pd.DataFrame(np.random.randn(6,2), hier_index, ['A', 'B'])df

Separating Group 1:

df.loc['G1']

Or Group 2:

df.loc['G2']

In Group 2, return row one:

df.loc['G2'].loc[1]A   -1.000487
B -2.259334
Name: 1, dtype: float64

Or specific value:

df.loc['G2'].loc[1][0]-1.0004870600502171

Now the Index names:

df.index.names

It’s blank…

FrozenList([None, None])

This is just a Pandas index names object types. All it’s saying here is that these indices don’t have any names but you can go ahead and do say equals and then pass in a list of names.

Let’s name each index:

df.index.names = ['Groups', 'Num']df

Cross Section (xs):

df.xs(1, level='Num')
Level Num=1 for Group 1 and Group 2
df.xs(3, level='Num')
Repeating for the extremes values (3)

8 — PIVOT TABLE

A = ["G2", "G2", "G2", "G2", "G2", "G1", "G1", "G1", "G1"]
B = [1, 1, 1, 2, 2, 1, 1, 2, 2]
C = [2, 1, 1, 2, 2, 1, 2, 2, 1]
D = [1, 2, 2, 1, 2, 1, 2, 1, 1]
E = [2, 1, 2, 2, 1, 1, 2, 2, 1]

Create an empty DataFrame:

df = pd.DataFrame()

Populating it:

df['A'] = A
df['B'] = B
df['C'] = C
df['D'] = D
df['E'] = E
df

Here is the pivot table:

df.pivot_table(values='D', index=['A', 'B'], columns=['C'], fill_value=0 )

This example aggregates values by taking the sum:

table = pd.pivot_table(df, values='D', index=['A', 'B'],columns=['C'], aggfunc=np.sum, fill_value=0

Calling the table object:

table

9 — MERGING, JOINING, and CONCATENATION

2 DataFrames: left and right:

left = pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0','A1','A2','A3'], 'B':['B0','B1','B2','B3'], })left
right = pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A4','A5','A6','A7'], 'B':['B4','B5','B6','B7'], })right

Merging

pd.merge(left,right,how='inner',on='key')

Joining

left.join(right, how='inner', lsuffix='_left', rsuffix='_right')

Concatenation

pd.concat([left, right])
pd.concat([left, right], axis=1)
For more info: Official Pandas Link
print("I hope you enjoyed that lecture o/\nIf you find this post helpful, please click the applause button and subscribe to the page for more articles like this one.\nHave a Nice Day!")

I hope you enjoyed that lecture o/
If you find this post helpful, please click the applause button and subscribe to the page for more articles like this one.
Have a Nice Day!

Photo from this link

Until next time!

👉Jupiter notebook link :)

👉or collab link

👉git

Credits & References

Jose Portilla Python for Data Science and Machine Learning Bootcamp — Learn how to use NumPy, Pandas, Seaborn, Matplotlib, Plotly, Scikit-Learn, Machine Learning, Tensorflow, and more!

Related Posts

00#Episode#PurePythonSeries — Lambda in Python — Python Lambda Desmistification

01#Episode#PurePythonSeries — Send Email in Python — Using Jupyter Notebook — How To Send Gmail In Python

02#Episode#PurePythonSeries — Automate Your Email With Python & Outlook — How To Create An Email Trigger System in Python

03#Episode#PurePythonSeries — Manipulating Files With Python — Manage Your Lovely Photos With Python!

04#Episode#PurePythonSeries — Pandas DataFrame Advanced — A Complete Notebook Review (this one)

05#Episode#PurePythonSeries — Is This Leap Year? Python Calendar — How To Calculate If The Year Is Leap Year and How Many Days Are In The Month

06#Episode#PurePythonSeries — List Comprehension In Python — Locked-in Secrets About List Comprehension

07#Episode#PurePythonSeries — Graphs — In Python — Extremely Simple Algorithms in Python

08#Episode#PurePythonSeries — Decorator in Python — How To Simplifying Your Code And Boost Your Function

--

--

--

J of Jungle + 3 Plats Arduino/RPi/Pic = J3

Recommended from Medium

Access Roadmap Update

How To Install Tool-X In Termux | All About Technology

DevOps / SRE — Top Links Last Week

How to Design Software — Monitoring Systems

Brief Look Into Design Patterns: Singleton & Decorator

5 things a Project Manager can do to improve Software Development

There are a few things Cake PHP does to make development easier.

Day 2: Array, Dictionaries, Sets, Tuples and Enum

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
J3

J3

Hi, Guys o/ I am J3! I am just a hobby-dev, playing around with Python, Django, Lego, Arduino, Raspy, PIC, AI… Welcome! Join us!

More from Medium

Important functions you need to know about Pandas

Become a pandas ninja with nlargest(), nsmallest(), query() and where() methods

Adding and dropping rows/columns with Pandas

5 Python Beginner Tricks to Speed-up Your Development (with instructions)