Smart Grid control technology

What is smart grid?

In Smart Grid, “The grid,” refers to the electric grid, a network of transmission lines, substations, transformers and more that deliver electricity from the power plant to your home or business. It’s what you plug into when you flip on your light switch or power up your computer. Our current electric grid was built in the 1890s and improved upon as technology advanced through each decade. Today, it consists of more than 9,200 electric generating units with more than 1 million megawatts of generating capacity connected to more than 300,000 miles of transmission lines. Although the electric grid is considered an engineering marvel, we are stretching its patchwork nature to its capacity. To move forward, we need a new kind of electric grid, one that is built from the bottom up to handle the groundswell of digital and computerized equipment and technology dependent on it — and one that can automate and manage the increasing complexity and needs of electricity in the 21st Century.

What Makes a Grid “Smart?”

In short, the digital technology that allows for two-way communication between the utility and its customers, and the sensing along the transmission lines is what makes the grid smart. Like the Internet, the Smart Grid will consist of controls, computers, automation, and new technologies and equipment working together, but in this case, these technologies will work with the electrical grid to respond digitally to our quickly changing electric demand.

What does a Smart Grid do?

The Smart Grid represents an unprecedented opportunity to move the energy industry into a new era of reliability, availability, and efficiency that will contribute to our economic and environmental health. During the transition period, it will be critical to carry out testing, technology improvements, consumer education, development of standards and regulations, and information sharing between projects to ensure that the benefits we envision from the Smart Grid become a reality. The benefits associated with the Smart Grid include:

  • More efficient transmission of electricity
  • Quicker restoration of electricity after power disturbances
  • Reduced operations and management costs for utilities, and ultimately lower power costs for consumers
  • Reduced peak demand, which will also help lower electricity rates
  • Increased integration of large-scale renewable energy systems
  • Better integration of customer-owner power generation systems, including renewable energy systems
  • Improved security

In this blog we will be discussing the challenges to manage smart grid and the use of 5G technology to control and monitor the grid.

Challenges in smart grid controlling

ICT inclusion in power system management introduces new challenges, due to the multiple factors that may affect the correct exchange of information within the Smart Grid Wide Area Monitoring, Control and Protection system (SG-WAMPAC). These factors can be classified in two main categories:

§ External influences, like weather conditions for wireless technologies, or cyber-attacks;

§ Internal system reliability ,that is software and hardware failures in the ICT components.

5G for Smart Grid Monitoring

In our analysis, the communication technology considered is the 5th generation cellular communication (5G). 5G technologies represent a promising candidate for implementing the communication infrastructure that allows data traffic to be transmitted from measurement devices to control centers in Wide Area Monitoring, Control and Protection (WAMPAC) systems. In fact, 5G is expected to meet the requirements for a smart grid implementation, with highly reliable communication, low latencies, high safety against malicious intruders and high scalability.

Two different versions of 5G Radio Access Technologies (RAT), namely 5G with LTE and 5G with URLLC (Ultra Reliable and Low Latency Communication) are compared with an ideal failure-free communication technology, in order to highlight the impact of communication failures on the state estimation accuracy. The study showed significant improvements in the performances of the state estimation with a monitoring system supported by URLLC-based 5G technologies compared with LTE-based communication infrastructures. For example, in terms of voltage mean estimation error, the URLLC-based 5G technology presented a reduction of 21%, when compared with LTE-based communication technologies. A URLLC-based 5G solution also demonstrated a stronger resilience towards simultaneous failures on wide areas of the power network.

The analysis performed with our proposed methodology highlights the close-to-ideal behavior of 5G-URLLC. Moreover, it confirms the expectation towards 5G as a technology able to support Smart Grid communication, not only on monitoring applications, but more generally on all data traffic related to the future distribution grid operation.

Reference:

1.https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid

--

--