An evolutionary guide to making vitamin C

eLife
Life on Earth
Published in
3 min readJul 16, 2015

--

While some animals — including humans — cannot make vitamin C, those that can do so in a way that is different from plants and most algae.

Animals, plants, algae and other eukaryotic organisms all need vitamin C to enable many of their enzymes to work properly. Vitamin C also protects plant and algal cells from damage by molecules called reactive oxygen species (ROS), which can be produced when these cells harvest energy from sunlight in a process called photosynthesis. Photosynthesis occurs inside structures called chloroplasts, and has evolved on multiple occasions in eukaryotes when non-photosynthetic organisms acquired chloroplasts from other algae and then had to develop improved defences against ROS.

There are several steps involved in the production of vitamin C. In many animals, an enzyme called GULO carries out the final step by converting a molecule known as an aldonolactone into vitamin C; this reaction also produces ROS as a waste product. The GULO enzyme is missing in humans, primates and some other groups of animals, so these organisms must get all the vitamin C they need from their diet.

Plants and algae use a different enzyme — called GLDH — to make vitamin C from aldonolactone. GLDH is very similar to GULO, but it does not produce ROS as a waste product. It is not clear how the different pathways have evolved, or why some animals have lost the ability to make their own vitamin C.

Here, Glen Wheeler, Nicholas Smirnoff and co-workers used genetics and biochemistry to investigate the evolutionary origins of vitamin C production in a variety of eukaryotic organisms. This investigation revealed that although GULO is missing from the insects and several other groups of animals, it is present in the sponges and many other eukaryotes. This suggests that GULO evolved in early eukaryotic organisms and has since been lost by the different groups of animals. On the other hand, GLDH is only found in plants and the other eukaryotes that can photosynthesize.

Wheeler, Smirnoff and co-workers’ findings suggest that GULO has been lost and replaced by GLDH in all plants and algae following their acquisition of chloroplasts. GDLH allows plants and algae to make vitamin C without also producing ROS, which could explain why vitamin C has been able to take on an extra role in these organisms. The results allow us to better understand the functions of vitamin C in photosynthetic organisms and the processes associated with the acquisition of chloroplasts during evolution.

To find out more

Read the eLife research paper on which this eLife Digest is based: Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes(March 13, 2015).

Read a commentary on this research paper: Ascorbate biosynthesis: A cross-kingdom history.

eLife is an open-access journal that publishes outstanding research in the life sciences and biomedicine.

The main text on this page was reused (with modification) under the terms of a Creative Commons Attribution 4.0 International License. The original “eLife digest” can be found in the linked eLife research paper.-

--

--

eLife
Life on Earth

Cutting jargon and putting research in context