Image Credit: J_Blueberry from Pixabay (CC0)

Facing the right direction

Neurons responsible for tracking the direction of the head during flight are connected in a certain way in insects.

eLife
Published in
2 min readSep 6, 2024

--

Insects, including fruit flies and locusts, move throughout their environment to find food, interact with each other or escape danger. To navigate their surroundings, insects need to be able to keep track of their orientation. This tracking is achieved through visual cues and integrating information about their movements whilst flying so they know which direction their head is facing.

The set of neurons responsible for relaying information about the direction of the head (also known as heading) are connected in a ring made up of eight columns of cells. Previous studies showed that the level of activity across this ring of neurons resembles a sinusoid shape: a smooth curve with one peak which encodes the animal’s heading. Neurons downstream from this eight-column ring, which relay velocity information, also display this sinusoidal pattern of activation.

Aceituno, Dall’Osto and Pisokas wanted to understand whether this sinusoidal pattern was an evolutionary coincidence, or whether it offers a particular advantage to insects. To answer this question, they established the mathematical criteria required for neurons in the eight-column ring to encode information about the heading of the animal. This revealed that these conditions can be satisfied by many different patterns of activation, not just the sinusoidal shape.

However, Aceituno, Dall’Osto and Pisokas show that the sinusoidal shape is the most resilient to variations in neuronal activity which may impact the encoded information. Further experiments revealed that this resilience only occurred if neurons in the circuit were connected in a certain pattern.

Aceituno, Dall’Osto and Pisokas then compared this circuit with experimental data from locusts and fruit flies and found that both insects exhibit the predicted connection pattern. They also discovered that animals do not have to be born with this neuronal connection pattern, but can develop it during their lifetime.

These findings provide fresh insights into how insects relay information about the direction of their head as they fly. They suggest that the structure of the neuronal circuit responsible for encoding head direction was not formed by chance but instead arose due to the evolutionary benefits it provided.

--

--

eLife

Cutting jargon and putting research in context